Theorem con4b | index | src |

theorem con4b (a b: wff): $ (~a <-> ~b) -> (a <-> b) $;
StepHypRefExpression
1 bi2
(~a <-> ~b) -> ~b -> ~a
2 1 con4d
(~a <-> ~b) -> a -> b
3 bi1
(~a <-> ~b) -> ~a -> ~b
4 3 con4d
(~a <-> ~b) -> b -> a
5 2, 4 ibid
(~a <-> ~b) -> (a <-> b)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp)