Theorem elv | index | src |

theorem elv (a: nat): $ a e. _V $;
StepHypRefExpression
1 biidd
x = a -> (T. <-> T.)
2 1 elabe
a e. {x | T.} <-> T.
3 2 conv Univ
a e. _V <-> T.
4 itru
T.
5 3, 4 mpbir
a e. _V

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8)