Theorem inv1 | index | src |

theorem inv1 (A: set): $ _V i^i A == A $;
StepHypRefExpression
1 bitr
(x e. _V i^i A <-> x e. _V /\ x e. A) -> (x e. _V /\ x e. A <-> x e. A) -> (x e. _V i^i A <-> x e. A)
2 elin
x e. _V i^i A <-> x e. _V /\ x e. A
3 1, 2 ax_mp
(x e. _V /\ x e. A <-> x e. A) -> (x e. _V i^i A <-> x e. A)
4 bian1
x e. _V -> (x e. _V /\ x e. A <-> x e. A)
5 elv
x e. _V
6 4, 5 ax_mp
x e. _V /\ x e. A <-> x e. A
7 3, 6 ax_mp
x e. _V i^i A <-> x e. A
8 7 eqri
_V i^i A == A

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8)