theorem inv1 (A: set): $ _V i^i A == A $;
Step | Hyp | Ref | Expression |
1 |
|
bitr |
(x e. _V i^i A <-> x e. _V /\ x e. A) -> (x e. _V /\ x e. A <-> x e. A) -> (x e. _V i^i A <-> x e. A) |
2 |
|
elin |
x e. _V i^i A <-> x e. _V /\ x e. A |
3 |
1, 2 |
ax_mp |
(x e. _V /\ x e. A <-> x e. A) -> (x e. _V i^i A <-> x e. A) |
4 |
|
bian1 |
x e. _V -> (x e. _V /\ x e. A <-> x e. A) |
5 |
|
elv |
x e. _V |
6 |
4, 5 |
ax_mp |
x e. _V /\ x e. A <-> x e. A |
7 |
3, 6 |
ax_mp |
x e. _V i^i A <-> x e. A |
8 |
7 |
eqri |
_V i^i A == A |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8)