pub theorem elins (a b c: nat): $ a e. b ; c <-> a = b \/ a e. c $;
Step | Hyp | Ref | Expression |
1 |
|
bitr |
(a e. b ; c <-> a e. {x | x = b \/ x e. c}) -> (a e. {x | x = b \/ x e. c} <-> a = b \/ a e. c) -> (a e. b ; c <-> a = b \/ a e. c) |
2 |
|
ellower |
finite {x | x = b \/ x e. c} -> (a e. lower {x | x = b \/ x e. c} <-> a e. {x | x = b \/ x e. c}) |
3 |
2 |
conv ins |
finite {x | x = b \/ x e. c} -> (a e. b ; c <-> a e. {x | x = b \/ x e. c}) |
4 |
|
finss |
{x | x = b \/ x e. c} C_ {x | x <= max b c} -> finite {x | x <= max b c} -> finite {x | x = b \/ x e. c} |
5 |
|
ssab |
A. x (x = b \/ x e. c -> x <= max b c) <-> {x | x = b \/ x e. c} C_ {x | x <= max b c} |
6 |
|
eor |
(x = b -> x <= max b c) -> (x e. c -> x <= max b c) -> x = b \/ x e. c -> x <= max b c |
7 |
|
lemax1 |
b <= max b c |
8 |
|
leeq1 |
x = b -> (x <= max b c <-> b <= max b c) |
9 |
7, 8 |
mpbiri |
x = b -> x <= max b c |
10 |
6, 9 |
ax_mp |
(x e. c -> x <= max b c) -> x = b \/ x e. c -> x <= max b c |
11 |
|
ellt |
x e. c -> x < c |
12 |
|
ltle |
x < c -> x <= c |
13 |
|
lemax2 |
c <= max b c |
14 |
13 |
a1i |
x < c -> c <= max b c |
15 |
12, 14 |
letrd |
x < c -> x <= max b c |
16 |
11, 15 |
rsyl |
x e. c -> x <= max b c |
17 |
10, 16 |
ax_mp |
x = b \/ x e. c -> x <= max b c |
18 |
17 |
ax_gen |
A. x (x = b \/ x e. c -> x <= max b c) |
19 |
5, 18 |
mpbi |
{x | x = b \/ x e. c} C_ {x | x <= max b c} |
20 |
4, 19 |
ax_mp |
finite {x | x <= max b c} -> finite {x | x = b \/ x e. c} |
21 |
|
lefin |
finite {x | x <= max b c} |
22 |
20, 21 |
ax_mp |
finite {x | x = b \/ x e. c} |
23 |
3, 22 |
ax_mp |
a e. b ; c <-> a e. {x | x = b \/ x e. c} |
24 |
1, 23 |
ax_mp |
(a e. {x | x = b \/ x e. c} <-> a = b \/ a e. c) -> (a e. b ; c <-> a = b \/ a e. c) |
25 |
|
eqeq1 |
x = a -> (x = b <-> a = b) |
26 |
|
eleq1 |
x = a -> (x e. c <-> a e. c) |
27 |
25, 26 |
oreqd |
x = a -> (x = b \/ x e. c <-> a = b \/ a e. c) |
28 |
27 |
elabe |
a e. {x | x = b \/ x e. c} <-> a = b \/ a e. c |
29 |
24, 28 |
ax_mp |
a e. b ; c <-> a = b \/ a e. c |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)