pub theorem elins (a b c: nat): $ a e. b ; c <-> a = b \/ a e. c $;
    
      
        | Step | Hyp | Ref | Expression | 
|---|
        
          | 1 |  | bitr | (a e. b ; c <-> a e. {x | x = b \/ x e. c}) -> (a e. {x | x = b \/ x e. c} <-> a = b \/ a e. c) -> (a e. b ; c <-> a = b \/ a e. c) | 
        
          | 2 |  | ellower | finite {x | x = b \/ x e. c} -> (a e. lower {x | x = b \/ x e. c} <-> a e. {x | x = b \/ x e. c}) | 
        
          | 3 | 2 | conv ins | finite {x | x = b \/ x e. c} -> (a e. b ; c <-> a e. {x | x = b \/ x e. c}) | 
        
          | 4 |  | finss | {x | x = b \/ x e. c} C_ {x | x <= max b c} -> finite {x | x <= max b c} -> finite {x | x = b \/ x e. c} | 
        
          | 5 |  | ssab | A. x (x = b \/ x e. c -> x <= max b c) <-> {x | x = b \/ x e. c} C_ {x | x <= max b c} | 
        
          | 6 |  | eor | (x = b -> x <= max b c) -> (x e. c -> x <= max b c) -> x = b \/ x e. c -> x <= max b c | 
        
          | 7 |  | lemax1 | b <= max b c | 
        
          | 8 |  | leeq1 | x = b -> (x <= max b c <-> b <= max b c) | 
        
          | 9 | 7, 8 | mpbiri | x = b -> x <= max b c | 
        
          | 10 | 6, 9 | ax_mp | (x e. c -> x <= max b c) -> x = b \/ x e. c -> x <= max b c | 
        
          | 11 |  | ellt | x e. c -> x < c | 
        
          | 12 |  | ltle | x < c -> x <= c | 
        
          | 13 |  | lemax2 | c <= max b c | 
        
          | 14 | 13 | a1i | x < c -> c <= max b c | 
        
          | 15 | 12, 14 | letrd | x < c -> x <= max b c | 
        
          | 16 | 11, 15 | rsyl | x e. c -> x <= max b c | 
        
          | 17 | 10, 16 | ax_mp | x = b \/ x e. c -> x <= max b c | 
        
          | 18 | 17 | ax_gen | A. x (x = b \/ x e. c -> x <= max b c) | 
        
          | 19 | 5, 18 | mpbi | {x | x = b \/ x e. c} C_ {x | x <= max b c} | 
        
          | 20 | 4, 19 | ax_mp | finite {x | x <= max b c} -> finite {x | x = b \/ x e. c} | 
        
          | 21 |  | lefin | finite {x | x <= max b c} | 
        
          | 22 | 20, 21 | ax_mp | finite {x | x = b \/ x e. c} | 
        
          | 23 | 3, 22 | ax_mp | a e. b ; c <-> a e. {x | x = b \/ x e. c} | 
        
          | 24 | 1, 23 | ax_mp | (a e. {x | x = b \/ x e. c} <-> a = b \/ a e. c) -> (a e. b ; c <-> a = b \/ a e. c) | 
        
          | 25 |  | eqeq1 | x = a -> (x = b <-> a = b) | 
        
          | 26 |  | eleq1 | x = a -> (x e. c <-> a e. c) | 
        
          | 27 | 25, 26 | oreqd | x = a -> (x = b \/ x e. c <-> a = b \/ a e. c) | 
        
          | 28 | 27 | elabe | a e. {x | x = b \/ x e. c} <-> a = b \/ a e. c | 
        
          | 29 | 24, 28 | ax_mp | a e. b ; c <-> a = b \/ a e. c | 
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8),
    
axs_the
     (theid,
      the0),
    
axs_peano
     (peano1,
      peano2,
      peano5,
      addeq,
      muleq,
      add0,
      addS,
      mul0,
      mulS)