theorem inscom (a b c: nat): $ a ; b ; c = b ; a ; c $;
    
      
        | Step | Hyp | Ref | Expression | 
|---|
        
          | 1 |  | axext | a ; b ; c == b ; a ; c -> a ; b ; c = b ; a ; c | 
        
          | 2 |  | elins | x e. a ; b ; c <-> x = a \/ x e. b ; c | 
        
          | 3 |  | elins | x e. b ; a ; c <-> x = b \/ x e. a ; c | 
        
          | 4 |  | oreq2 | (x e. b ; c <-> x = b \/ x e. c) -> (x = a \/ x e. b ; c <-> x = a \/ (x = b \/ x e. c)) | 
        
          | 5 |  | elins | x e. b ; c <-> x = b \/ x e. c | 
        
          | 6 | 4, 5 | ax_mp | x = a \/ x e. b ; c <-> x = a \/ (x = b \/ x e. c) | 
        
          | 7 |  | oreq2 | (x e. a ; c <-> x = a \/ x e. c) -> (x = b \/ x e. a ; c <-> x = b \/ (x = a \/ x e. c)) | 
        
          | 8 |  | elins | x e. a ; c <-> x = a \/ x e. c | 
        
          | 9 | 7, 8 | ax_mp | x = b \/ x e. a ; c <-> x = b \/ (x = a \/ x e. c) | 
        
          | 10 |  | or12 | x = a \/ (x = b \/ x e. c) <-> x = b \/ (x = a \/ x e. c) | 
        
          | 11 | 6, 9, 10 | bitr4gi | x = a \/ x e. b ; c <-> x = b \/ x e. a ; c | 
        
          | 12 | 2, 3, 11 | bitr4gi | x e. a ; b ; c <-> x e. b ; a ; c | 
        
          | 13 | 12 | ax_gen | A. x (x e. a ; b ; c <-> x e. b ; a ; c) | 
        
          | 14 | 13 | conv eqs | a ; b ; c == b ; a ; c | 
        
          | 15 | 1, 14 | ax_mp | a ; b ; c = b ; a ; c | 
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8),
    
axs_the
     (theid,
      the0),
    
axs_peano
     (peano1,
      peano2,
      peano5,
      addeq,
      muleq,
      add0,
      addS,
      mul0,
      mulS)