theorem inscom (a b c: nat): $ a ; b ; c = b ; a ; c $;
Step | Hyp | Ref | Expression |
1 |
|
axext |
a ; b ; c == b ; a ; c -> a ; b ; c = b ; a ; c |
2 |
|
elins |
x e. a ; b ; c <-> x = a \/ x e. b ; c |
3 |
|
elins |
x e. b ; a ; c <-> x = b \/ x e. a ; c |
4 |
|
oreq2 |
(x e. b ; c <-> x = b \/ x e. c) -> (x = a \/ x e. b ; c <-> x = a \/ (x = b \/ x e. c)) |
5 |
|
elins |
x e. b ; c <-> x = b \/ x e. c |
6 |
4, 5 |
ax_mp |
x = a \/ x e. b ; c <-> x = a \/ (x = b \/ x e. c) |
7 |
|
oreq2 |
(x e. a ; c <-> x = a \/ x e. c) -> (x = b \/ x e. a ; c <-> x = b \/ (x = a \/ x e. c)) |
8 |
|
elins |
x e. a ; c <-> x = a \/ x e. c |
9 |
7, 8 |
ax_mp |
x = b \/ x e. a ; c <-> x = b \/ (x = a \/ x e. c) |
10 |
|
or12 |
x = a \/ (x = b \/ x e. c) <-> x = b \/ (x = a \/ x e. c) |
11 |
6, 9, 10 |
bitr4gi |
x = a \/ x e. b ; c <-> x = b \/ x e. a ; c |
12 |
2, 3, 11 |
bitr4gi |
x e. a ; b ; c <-> x e. b ; a ; c |
13 |
12 |
ax_gen |
A. x (x e. a ; b ; c <-> x e. b ; a ; c) |
14 |
13 |
conv eqs |
a ; b ; c == b ; a ; c |
15 |
1, 14 |
ax_mp |
a ; b ; c = b ; a ; c |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)