theorem or12 (a b c: wff): $ a \/ (b \/ c) <-> b \/ (a \/ c) $;
Step | Hyp | Ref | Expression |
1 |
|
bitr3 |
(~a /\ ~b -> c <-> a \/ (b \/ c)) -> (~a /\ ~b -> c <-> b \/ (a \/ c)) -> (a \/ (b \/ c) <-> b \/ (a \/ c)) |
2 |
|
impexp |
~a /\ ~b -> c <-> ~a -> ~b -> c |
3 |
2 |
conv or |
~a /\ ~b -> c <-> a \/ (b \/ c) |
4 |
1, 3 |
ax_mp |
(~a /\ ~b -> c <-> b \/ (a \/ c)) -> (a \/ (b \/ c) <-> b \/ (a \/ c)) |
5 |
|
bitr |
(~a /\ ~b -> c <-> ~b /\ ~a -> c) -> (~b /\ ~a -> c <-> b \/ (a \/ c)) -> (~a /\ ~b -> c <-> b \/ (a \/ c)) |
6 |
|
ancomb |
~a /\ ~b <-> ~b /\ ~a |
7 |
6 |
imeq1i |
~a /\ ~b -> c <-> ~b /\ ~a -> c |
8 |
5, 7 |
ax_mp |
(~b /\ ~a -> c <-> b \/ (a \/ c)) -> (~a /\ ~b -> c <-> b \/ (a \/ c)) |
9 |
|
impexp |
~b /\ ~a -> c <-> ~b -> ~a -> c |
10 |
9 |
conv or |
~b /\ ~a -> c <-> b \/ (a \/ c) |
11 |
8, 10 |
ax_mp |
~a /\ ~b -> c <-> b \/ (a \/ c) |
12 |
4, 11 |
ax_mp |
a \/ (b \/ c) <-> b \/ (a \/ c) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp)