theorem orass (a b c: wff): $ a \/ b \/ c <-> a \/ (b \/ c) $;
| Step | Hyp | Ref | Expression |
| 1 |
|
bitr |
(a \/ b \/ c <-> c \/ (a \/ b)) -> (c \/ (a \/ b) <-> a \/ (b \/ c)) -> (a \/ b \/ c <-> a \/ (b \/ c)) |
| 2 |
|
orcomb |
a \/ b \/ c <-> c \/ (a \/ b) |
| 3 |
1, 2 |
ax_mp |
(c \/ (a \/ b) <-> a \/ (b \/ c)) -> (a \/ b \/ c <-> a \/ (b \/ c)) |
| 4 |
|
bitr |
(c \/ (a \/ b) <-> a \/ (c \/ b)) -> (a \/ (c \/ b) <-> a \/ (b \/ c)) -> (c \/ (a \/ b) <-> a \/ (b \/ c)) |
| 5 |
|
or12 |
c \/ (a \/ b) <-> a \/ (c \/ b) |
| 6 |
4, 5 |
ax_mp |
(a \/ (c \/ b) <-> a \/ (b \/ c)) -> (c \/ (a \/ b) <-> a \/ (b \/ c)) |
| 7 |
|
oreq2 |
(c \/ b <-> b \/ c) -> (a \/ (c \/ b) <-> a \/ (b \/ c)) |
| 8 |
|
orcomb |
c \/ b <-> b \/ c |
| 9 |
7, 8 |
ax_mp |
a \/ (c \/ b) <-> a \/ (b \/ c) |
| 10 |
6, 9 |
ax_mp |
c \/ (a \/ b) <-> a \/ (b \/ c) |
| 11 |
3, 10 |
ax_mp |
a \/ b \/ c <-> a \/ (b \/ c) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp)