theorem or4 (a b c d: wff): $ a \/ b \/ (c \/ d) <-> a \/ c \/ (b \/ d) $;
    
      
        | Step | Hyp | Ref | Expression | 
|---|
        
          | 1 |  | bitr4 | (a \/ b \/ (c \/ d) <-> a \/ (b \/ (c \/ d))) -> (a \/ c \/ (b \/ d) <-> a \/ (b \/ (c \/ d))) -> (a \/ b \/ (c \/ d) <-> a \/ c \/ (b \/ d)) | 
        
          | 2 |  | orass | a \/ b \/ (c \/ d) <-> a \/ (b \/ (c \/ d)) | 
        
          | 3 | 1, 2 | ax_mp | (a \/ c \/ (b \/ d) <-> a \/ (b \/ (c \/ d))) -> (a \/ b \/ (c \/ d) <-> a \/ c \/ (b \/ d)) | 
        
          | 4 |  | bitr4 | (a \/ c \/ (b \/ d) <-> a \/ (c \/ (b \/ d))) -> (a \/ (b \/ (c \/ d)) <-> a \/ (c \/ (b \/ d))) -> (a \/ c \/ (b \/ d) <-> a \/ (b \/ (c \/ d))) | 
        
          | 5 |  | orass | a \/ c \/ (b \/ d) <-> a \/ (c \/ (b \/ d)) | 
        
          | 6 | 4, 5 | ax_mp | (a \/ (b \/ (c \/ d)) <-> a \/ (c \/ (b \/ d))) -> (a \/ c \/ (b \/ d) <-> a \/ (b \/ (c \/ d))) | 
        
          | 7 |  | oreq2 | (b \/ (c \/ d) <-> c \/ (b \/ d)) -> (a \/ (b \/ (c \/ d)) <-> a \/ (c \/ (b \/ d))) | 
        
          | 8 |  | or12 | b \/ (c \/ d) <-> c \/ (b \/ d) | 
        
          | 9 | 7, 8 | ax_mp | a \/ (b \/ (c \/ d)) <-> a \/ (c \/ (b \/ d)) | 
        
          | 10 | 6, 9 | ax_mp | a \/ c \/ (b \/ d) <-> a \/ (b \/ (c \/ d)) | 
        
          | 11 | 3, 10 | ax_mp | a \/ b \/ (c \/ d) <-> a \/ c \/ (b \/ d) | 
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp)