Theorem or4 | index | src |

theorem or4 (a b c d: wff): $ a \/ b \/ (c \/ d) <-> a \/ c \/ (b \/ d) $;
StepHypRefExpression
1 bitr4
(a \/ b \/ (c \/ d) <-> a \/ (b \/ (c \/ d))) -> (a \/ c \/ (b \/ d) <-> a \/ (b \/ (c \/ d))) -> (a \/ b \/ (c \/ d) <-> a \/ c \/ (b \/ d))
2 orass
a \/ b \/ (c \/ d) <-> a \/ (b \/ (c \/ d))
3 1, 2 ax_mp
(a \/ c \/ (b \/ d) <-> a \/ (b \/ (c \/ d))) -> (a \/ b \/ (c \/ d) <-> a \/ c \/ (b \/ d))
4 bitr4
(a \/ c \/ (b \/ d) <-> a \/ (c \/ (b \/ d))) -> (a \/ (b \/ (c \/ d)) <-> a \/ (c \/ (b \/ d))) -> (a \/ c \/ (b \/ d) <-> a \/ (b \/ (c \/ d)))
5 orass
a \/ c \/ (b \/ d) <-> a \/ (c \/ (b \/ d))
6 4, 5 ax_mp
(a \/ (b \/ (c \/ d)) <-> a \/ (c \/ (b \/ d))) -> (a \/ c \/ (b \/ d) <-> a \/ (b \/ (c \/ d)))
7 oreq2
(b \/ (c \/ d) <-> c \/ (b \/ d)) -> (a \/ (b \/ (c \/ d)) <-> a \/ (c \/ (b \/ d)))
8 or12
b \/ (c \/ d) <-> c \/ (b \/ d)
9 7, 8 ax_mp
a \/ (b \/ (c \/ d)) <-> a \/ (c \/ (b \/ d))
10 6, 9 ax_mp
a \/ c \/ (b \/ d) <-> a \/ (b \/ (c \/ d))
11 3, 10 ax_mp
a \/ b \/ (c \/ d) <-> a \/ c \/ (b \/ d)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp)