theorem or4 (a b c d: wff): $ a \/ b \/ (c \/ d) <-> a \/ c \/ (b \/ d) $;
Step | Hyp | Ref | Expression |
1 |
|
bitr4 |
(a \/ b \/ (c \/ d) <-> a \/ (b \/ (c \/ d))) -> (a \/ c \/ (b \/ d) <-> a \/ (b \/ (c \/ d))) -> (a \/ b \/ (c \/ d) <-> a \/ c \/ (b \/ d)) |
2 |
|
orass |
a \/ b \/ (c \/ d) <-> a \/ (b \/ (c \/ d)) |
3 |
1, 2 |
ax_mp |
(a \/ c \/ (b \/ d) <-> a \/ (b \/ (c \/ d))) -> (a \/ b \/ (c \/ d) <-> a \/ c \/ (b \/ d)) |
4 |
|
bitr4 |
(a \/ c \/ (b \/ d) <-> a \/ (c \/ (b \/ d))) -> (a \/ (b \/ (c \/ d)) <-> a \/ (c \/ (b \/ d))) -> (a \/ c \/ (b \/ d) <-> a \/ (b \/ (c \/ d))) |
5 |
|
orass |
a \/ c \/ (b \/ d) <-> a \/ (c \/ (b \/ d)) |
6 |
4, 5 |
ax_mp |
(a \/ (b \/ (c \/ d)) <-> a \/ (c \/ (b \/ d))) -> (a \/ c \/ (b \/ d) <-> a \/ (b \/ (c \/ d))) |
7 |
|
oreq2 |
(b \/ (c \/ d) <-> c \/ (b \/ d)) -> (a \/ (b \/ (c \/ d)) <-> a \/ (c \/ (b \/ d))) |
8 |
|
or12 |
b \/ (c \/ d) <-> c \/ (b \/ d) |
9 |
7, 8 |
ax_mp |
a \/ (b \/ (c \/ d)) <-> a \/ (c \/ (b \/ d)) |
10 |
6, 9 |
ax_mp |
a \/ c \/ (b \/ d) <-> a \/ (b \/ (c \/ d)) |
11 |
3, 10 |
ax_mp |
a \/ b \/ (c \/ d) <-> a \/ c \/ (b \/ d) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp)