Step | Hyp | Ref | Expression |
1 |
|
axext |
b0 (a ; b) == suc a ; b0 b -> b0 (a ; b) = suc a ; b0 b |
2 |
|
elb0 |
x e. b0 (a ; b) <-> 0 < x /\ x - 1 e. a ; b |
3 |
|
bitr |
(x e. suc a ; b0 b <-> x = suc a \/ x e. b0 b) ->
(x = suc a \/ x e. b0 b <-> x = suc a \/ 0 < x /\ x - 1 e. b) ->
(x e. suc a ; b0 b <-> x = suc a \/ 0 < x /\ x - 1 e. b) |
4 |
|
elins |
x e. suc a ; b0 b <-> x = suc a \/ x e. b0 b |
5 |
3, 4 |
ax_mp |
(x = suc a \/ x e. b0 b <-> x = suc a \/ 0 < x /\ x - 1 e. b) -> (x e. suc a ; b0 b <-> x = suc a \/ 0 < x /\ x - 1 e. b) |
6 |
|
oreq2 |
(x e. b0 b <-> 0 < x /\ x - 1 e. b) -> (x = suc a \/ x e. b0 b <-> x = suc a \/ 0 < x /\ x - 1 e. b) |
7 |
|
elb0 |
x e. b0 b <-> 0 < x /\ x - 1 e. b |
8 |
6, 7 |
ax_mp |
x = suc a \/ x e. b0 b <-> x = suc a \/ 0 < x /\ x - 1 e. b |
9 |
5, 8 |
ax_mp |
x e. suc a ; b0 b <-> x = suc a \/ 0 < x /\ x - 1 e. b |
10 |
|
anl |
0 < x /\ x - 1 e. a ; b -> 0 < x |
11 |
|
eor |
(x = suc a -> 0 < x) -> (0 < x /\ x - 1 e. b -> 0 < x) -> x = suc a \/ 0 < x /\ x - 1 e. b -> 0 < x |
12 |
|
lt01S |
0 < suc a |
13 |
|
lteq2 |
x = suc a -> (0 < x <-> 0 < suc a) |
14 |
12, 13 |
mpbiri |
x = suc a -> 0 < x |
15 |
11, 14 |
ax_mp |
(0 < x /\ x - 1 e. b -> 0 < x) -> x = suc a \/ 0 < x /\ x - 1 e. b -> 0 < x |
16 |
|
anl |
0 < x /\ x - 1 e. b -> 0 < x |
17 |
15, 16 |
ax_mp |
x = suc a \/ 0 < x /\ x - 1 e. b -> 0 < x |
18 |
|
bian1 |
0 < x -> (0 < x /\ x - 1 e. a ; b <-> x - 1 e. a ; b) |
19 |
|
elins |
x - 1 e. a ; b <-> x - 1 = a \/ x - 1 e. b |
20 |
|
peano2 |
suc (x - 1) = suc a <-> x - 1 = a |
21 |
|
lt01 |
0 < x <-> x != 0 |
22 |
|
sub1can |
x != 0 -> suc (x - 1) = x |
23 |
21, 22 |
sylbi |
0 < x -> suc (x - 1) = x |
24 |
23 |
eqeq1d |
0 < x -> (suc (x - 1) = suc a <-> x = suc a) |
25 |
20, 24 |
syl5bbr |
0 < x -> (x - 1 = a <-> x = suc a) |
26 |
|
bian1 |
0 < x -> (0 < x /\ x - 1 e. b <-> x - 1 e. b) |
27 |
26 |
bicomd |
0 < x -> (x - 1 e. b <-> 0 < x /\ x - 1 e. b) |
28 |
25, 27 |
oreqd |
0 < x -> (x - 1 = a \/ x - 1 e. b <-> x = suc a \/ 0 < x /\ x - 1 e. b) |
29 |
19, 28 |
syl5bb |
0 < x -> (x - 1 e. a ; b <-> x = suc a \/ 0 < x /\ x - 1 e. b) |
30 |
18, 29 |
bitrd |
0 < x -> (0 < x /\ x - 1 e. a ; b <-> x = suc a \/ 0 < x /\ x - 1 e. b) |
31 |
10, 17, 30 |
rbid |
0 < x /\ x - 1 e. a ; b <-> x = suc a \/ 0 < x /\ x - 1 e. b |
32 |
2, 9, 31 |
bitr4gi |
x e. b0 (a ; b) <-> x e. suc a ; b0 b |
33 |
32 |
ax_gen |
A. x (x e. b0 (a ; b) <-> x e. suc a ; b0 b) |
34 |
33 |
conv eqs |
b0 (a ; b) == suc a ; b0 b |
35 |
1, 34 |
ax_mp |
b0 (a ; b) = suc a ; b0 b |