theorem b1ins (n: nat): $ b1 n = 0 ; b0 n $;
    
      
        | Step | Hyp | Ref | Expression | 
|---|
        
          | 1 |  | axext | b1 n == 0 ; b0 n -> b1 n = 0 ; b0 n | 
        
          | 2 |  | elb1 | x e. b1 n <-> x = 0 \/ x - 1 e. n | 
        
          | 3 |  | bitr | (x e. 0 ; b0 n <-> x = 0 \/ x e. b0 n) -> (x = 0 \/ x e. b0 n <-> x = 0 \/ 0 < x /\ x - 1 e. n) -> (x e. 0 ; b0 n <-> x = 0 \/ 0 < x /\ x - 1 e. n) | 
        
          | 4 |  | elins | x e. 0 ; b0 n <-> x = 0 \/ x e. b0 n | 
        
          | 5 | 3, 4 | ax_mp | (x = 0 \/ x e. b0 n <-> x = 0 \/ 0 < x /\ x - 1 e. n) -> (x e. 0 ; b0 n <-> x = 0 \/ 0 < x /\ x - 1 e. n) | 
        
          | 6 |  | oreq2 | (x e. b0 n <-> 0 < x /\ x - 1 e. n) -> (x = 0 \/ x e. b0 n <-> x = 0 \/ 0 < x /\ x - 1 e. n) | 
        
          | 7 |  | elb0 | x e. b0 n <-> 0 < x /\ x - 1 e. n | 
        
          | 8 | 6, 7 | ax_mp | x = 0 \/ x e. b0 n <-> x = 0 \/ 0 < x /\ x - 1 e. n | 
        
          | 9 | 5, 8 | ax_mp | x e. 0 ; b0 n <-> x = 0 \/ 0 < x /\ x - 1 e. n | 
        
          | 10 |  | orl | x = 0 -> x = 0 \/ x - 1 e. n | 
        
          | 11 |  | orl | x = 0 -> x = 0 \/ 0 < x /\ x - 1 e. n | 
        
          | 12 | 10, 11 | bithd | x = 0 -> (x = 0 \/ x - 1 e. n <-> x = 0 \/ 0 < x /\ x - 1 e. n) | 
        
          | 13 |  | lt01 | 0 < x <-> x != 0 | 
        
          | 14 | 13 | conv ne | 0 < x <-> ~x = 0 | 
        
          | 15 |  | bian1 | 0 < x -> (0 < x /\ x - 1 e. n <-> x - 1 e. n) | 
        
          | 16 | 14, 15 | sylbir | ~x = 0 -> (0 < x /\ x - 1 e. n <-> x - 1 e. n) | 
        
          | 17 | 16 | bicomd | ~x = 0 -> (x - 1 e. n <-> 0 < x /\ x - 1 e. n) | 
        
          | 18 | 17 | oreq2d | ~x = 0 -> (x = 0 \/ x - 1 e. n <-> x = 0 \/ 0 < x /\ x - 1 e. n) | 
        
          | 19 | 12, 18 | cases | x = 0 \/ x - 1 e. n <-> x = 0 \/ 0 < x /\ x - 1 e. n | 
        
          | 20 | 2, 9, 19 | bitr4gi | x e. b1 n <-> x e. 0 ; b0 n | 
        
          | 21 | 20 | ax_gen | A. x (x e. b1 n <-> x e. 0 ; b0 n) | 
        
          | 22 | 21 | conv eqs | b1 n == 0 ; b0 n | 
        
          | 23 | 1, 22 | ax_mp | b1 n = 0 ; b0 n | 
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8),
    
axs_the
     (theid,
      the0),
    
axs_peano
     (peano1,
      peano2,
      peano5,
      addeq,
      muleq,
      add0,
      addS,
      mul0,
      mulS)