theorem b1ins (n: nat): $ b1 n = 0 ; b0 n $;
Step | Hyp | Ref | Expression |
1 |
|
axext |
b1 n == 0 ; b0 n -> b1 n = 0 ; b0 n |
2 |
|
elb1 |
x e. b1 n <-> x = 0 \/ x - 1 e. n |
3 |
|
bitr |
(x e. 0 ; b0 n <-> x = 0 \/ x e. b0 n) -> (x = 0 \/ x e. b0 n <-> x = 0 \/ 0 < x /\ x - 1 e. n) -> (x e. 0 ; b0 n <-> x = 0 \/ 0 < x /\ x - 1 e. n) |
4 |
|
elins |
x e. 0 ; b0 n <-> x = 0 \/ x e. b0 n |
5 |
3, 4 |
ax_mp |
(x = 0 \/ x e. b0 n <-> x = 0 \/ 0 < x /\ x - 1 e. n) -> (x e. 0 ; b0 n <-> x = 0 \/ 0 < x /\ x - 1 e. n) |
6 |
|
oreq2 |
(x e. b0 n <-> 0 < x /\ x - 1 e. n) -> (x = 0 \/ x e. b0 n <-> x = 0 \/ 0 < x /\ x - 1 e. n) |
7 |
|
elb0 |
x e. b0 n <-> 0 < x /\ x - 1 e. n |
8 |
6, 7 |
ax_mp |
x = 0 \/ x e. b0 n <-> x = 0 \/ 0 < x /\ x - 1 e. n |
9 |
5, 8 |
ax_mp |
x e. 0 ; b0 n <-> x = 0 \/ 0 < x /\ x - 1 e. n |
10 |
|
orl |
x = 0 -> x = 0 \/ x - 1 e. n |
11 |
|
orl |
x = 0 -> x = 0 \/ 0 < x /\ x - 1 e. n |
12 |
10, 11 |
bithd |
x = 0 -> (x = 0 \/ x - 1 e. n <-> x = 0 \/ 0 < x /\ x - 1 e. n) |
13 |
|
lt01 |
0 < x <-> x != 0 |
14 |
13 |
conv ne |
0 < x <-> ~x = 0 |
15 |
|
bian1 |
0 < x -> (0 < x /\ x - 1 e. n <-> x - 1 e. n) |
16 |
14, 15 |
sylbir |
~x = 0 -> (0 < x /\ x - 1 e. n <-> x - 1 e. n) |
17 |
16 |
bicomd |
~x = 0 -> (x - 1 e. n <-> 0 < x /\ x - 1 e. n) |
18 |
17 |
oreq2d |
~x = 0 -> (x = 0 \/ x - 1 e. n <-> x = 0 \/ 0 < x /\ x - 1 e. n) |
19 |
12, 18 |
cases |
x = 0 \/ x - 1 e. n <-> x = 0 \/ 0 < x /\ x - 1 e. n |
20 |
2, 9, 19 |
bitr4gi |
x e. b1 n <-> x e. 0 ; b0 n |
21 |
20 |
ax_gen |
A. x (x e. b1 n <-> x e. 0 ; b0 n) |
22 |
21 |
conv eqs |
b1 n == 0 ; b0 n |
23 |
1, 22 |
ax_mp |
b1 n = 0 ; b0 n |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)