Theorem elb1 | index | src |

theorem elb1 (a b: nat): $ a e. b1 b <-> a = 0 \/ a - 1 e. b $;
StepHypRefExpression
1 el01
0 e. b1 b <-> odd (b1 b)
2 b1odd
odd (b1 b)
3 1, 2 mpbir
0 e. b1 b
4 eleq1
a = 0 -> (a e. b1 b <-> 0 e. b1 b)
5 3, 4 mpbiri
a = 0 -> a e. b1 b
6 orl
a = 0 -> a = 0 \/ a - 1 e. b
7 5, 6 bithd
a = 0 -> (a e. b1 b <-> a = 0 \/ a - 1 e. b)
8 bior1
~a = 0 -> (a = 0 \/ a - 1 e. b <-> a - 1 e. b)
9 bitr3
(a - 1 e. b1 b // 2 <-> a - 1 e. b) -> (a - 1 e. b1 b // 2 <-> suc (a - 1) e. b1 b) -> (a - 1 e. b <-> suc (a - 1) e. b1 b)
10 elneq2
b1 b // 2 = b -> (a - 1 e. b1 b // 2 <-> a - 1 e. b)
11 b1div2
b1 b // 2 = b
12 10, 11 ax_mp
a - 1 e. b1 b // 2 <-> a - 1 e. b
13 9, 12 ax_mp
(a - 1 e. b1 b // 2 <-> suc (a - 1) e. b1 b) -> (a - 1 e. b <-> suc (a - 1) e. b1 b)
14 eldiv2
a - 1 e. b1 b // 2 <-> suc (a - 1) e. b1 b
15 13, 14 ax_mp
a - 1 e. b <-> suc (a - 1) e. b1 b
16 sub1can
a != 0 -> suc (a - 1) = a
17 16 conv ne
~a = 0 -> suc (a - 1) = a
18 17 eleq1d
~a = 0 -> (suc (a - 1) e. b1 b <-> a e. b1 b)
19 15, 18 syl5bb
~a = 0 -> (a - 1 e. b <-> a e. b1 b)
20 8, 19 bitrd
~a = 0 -> (a = 0 \/ a - 1 e. b <-> a e. b1 b)
21 20 bicomd
~a = 0 -> (a e. b1 b <-> a = 0 \/ a - 1 e. b)
22 7, 21 cases
a e. b1 b <-> a = 0 \/ a - 1 e. b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)