theorem elb1 (a b: nat): $ a e. b1 b <-> a = 0 \/ a - 1 e. b $;
| Step | Hyp | Ref | Expression |
| 1 |
|
el01 |
0 e. b1 b <-> odd (b1 b) |
| 2 |
|
b1odd |
odd (b1 b) |
| 3 |
1, 2 |
mpbir |
0 e. b1 b |
| 4 |
|
eleq1 |
a = 0 -> (a e. b1 b <-> 0 e. b1 b) |
| 5 |
3, 4 |
mpbiri |
a = 0 -> a e. b1 b |
| 6 |
|
orl |
a = 0 -> a = 0 \/ a - 1 e. b |
| 7 |
5, 6 |
bithd |
a = 0 -> (a e. b1 b <-> a = 0 \/ a - 1 e. b) |
| 8 |
|
bior1 |
~a = 0 -> (a = 0 \/ a - 1 e. b <-> a - 1 e. b) |
| 9 |
|
bitr3 |
(a - 1 e. b1 b // 2 <-> a - 1 e. b) -> (a - 1 e. b1 b // 2 <-> suc (a - 1) e. b1 b) -> (a - 1 e. b <-> suc (a - 1) e. b1 b) |
| 10 |
|
elneq2 |
b1 b // 2 = b -> (a - 1 e. b1 b // 2 <-> a - 1 e. b) |
| 11 |
|
b1div2 |
b1 b // 2 = b |
| 12 |
10, 11 |
ax_mp |
a - 1 e. b1 b // 2 <-> a - 1 e. b |
| 13 |
9, 12 |
ax_mp |
(a - 1 e. b1 b // 2 <-> suc (a - 1) e. b1 b) -> (a - 1 e. b <-> suc (a - 1) e. b1 b) |
| 14 |
|
eldiv2 |
a - 1 e. b1 b // 2 <-> suc (a - 1) e. b1 b |
| 15 |
13, 14 |
ax_mp |
a - 1 e. b <-> suc (a - 1) e. b1 b |
| 16 |
|
sub1can |
a != 0 -> suc (a - 1) = a |
| 17 |
16 |
conv ne |
~a = 0 -> suc (a - 1) = a |
| 18 |
17 |
eleq1d |
~a = 0 -> (suc (a - 1) e. b1 b <-> a e. b1 b) |
| 19 |
15, 18 |
syl5bb |
~a = 0 -> (a - 1 e. b <-> a e. b1 b) |
| 20 |
8, 19 |
bitrd |
~a = 0 -> (a = 0 \/ a - 1 e. b <-> a e. b1 b) |
| 21 |
20 |
bicomd |
~a = 0 -> (a e. b1 b <-> a = 0 \/ a - 1 e. b) |
| 22 |
7, 21 |
cases |
a e. b1 b <-> a = 0 \/ a - 1 e. b |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)