Theorem el01 | index | src |

theorem el01 (a: nat): $ 0 e. a <-> odd a $;
StepHypRefExpression
1 bitr
(0 e. a <-> odd (shr a 0)) -> (odd (shr a 0) <-> odd a) -> (0 e. a <-> odd a)
2 elnel
0 e. a <-> odd (shr a 0)
3 1, 2 ax_mp
(odd (shr a 0) <-> odd a) -> (0 e. a <-> odd a)
4 oddeq
shr a 0 = a -> (odd (shr a 0) <-> odd a)
5 shr02
shr a 0 = a
6 4, 5 ax_mp
odd (shr a 0) <-> odd a
7 3, 6 ax_mp
0 e. a <-> odd a

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)