Theorem shr02 | index | src |

theorem shr02 (a: nat): $ shr a 0 = a $;
StepHypRefExpression
1 eqtr
shr a 0 = a // 1 -> a // 1 = a -> shr a 0 = a
2 diveq2
2 ^ 0 = 1 -> a // 2 ^ 0 = a // 1
3 2 conv shr
2 ^ 0 = 1 -> shr a 0 = a // 1
4 pow0
2 ^ 0 = 1
5 3, 4 ax_mp
shr a 0 = a // 1
6 1, 5 ax_mp
a // 1 = a -> shr a 0 = a
7 div12
a // 1 = a
8 6, 7 ax_mp
shr a 0 = a

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)