Theorem pow0 | index | src |

pub theorem pow0 (a: nat): $ a ^ 0 = 1 $;
StepHypRefExpression
1 rec0
rec 1 (\ a1, a * a1) 0 = 1
2 1 conv pow
a ^ 0 = 1

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)