Theorem powS | index | src |

pub theorem powS (a b: nat): $ a ^ suc b = a * a ^ b $;
StepHypRefExpression
1 eqtr
a ^ suc b = (\ n, a * n) @ rec 1 (\ n, a * n) b -> (\ n, a * n) @ rec 1 (\ n, a * n) b = a * a ^ b -> a ^ suc b = a * a ^ b
2 recS
rec 1 (\ n, a * n) (suc b) = (\ n, a * n) @ rec 1 (\ n, a * n) b
3 2 conv pow
a ^ suc b = (\ n, a * n) @ rec 1 (\ n, a * n) b
4 1, 3 ax_mp
(\ n, a * n) @ rec 1 (\ n, a * n) b = a * a ^ b -> a ^ suc b = a * a ^ b
5 muleq2
n = a ^ b -> a * n = a * a ^ b
6 5 applame
(\ n, a * n) @ (a ^ b) = a * a ^ b
7 6 conv pow
(\ n, a * n) @ rec 1 (\ n, a * n) b = a * a ^ b
8 4, 7 ax_mp
a ^ suc b = a * a ^ b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)