theorem div12 (a: nat): $ a // 1 = a $;
Step | Hyp | Ref | Expression |
1 |
|
eqtr3 |
1 * (a // 1) + a % 1 = a // 1 -> 1 * (a // 1) + a % 1 = a -> a // 1 = a |
2 |
|
eqtr |
1 * (a // 1) + a % 1 = a // 1 + 0 -> a // 1 + 0 = a // 1 -> 1 * (a // 1) + a % 1 = a // 1 |
3 |
|
addeq |
1 * (a // 1) = a // 1 -> a % 1 = 0 -> 1 * (a // 1) + a % 1 = a // 1 + 0 |
4 |
|
mul11 |
1 * (a // 1) = a // 1 |
5 |
3, 4 |
ax_mp |
a % 1 = 0 -> 1 * (a // 1) + a % 1 = a // 1 + 0 |
6 |
|
mod12 |
a % 1 = 0 |
7 |
5, 6 |
ax_mp |
1 * (a // 1) + a % 1 = a // 1 + 0 |
8 |
2, 7 |
ax_mp |
a // 1 + 0 = a // 1 -> 1 * (a // 1) + a % 1 = a // 1 |
9 |
|
add02 |
a // 1 + 0 = a // 1 |
10 |
8, 9 |
ax_mp |
1 * (a // 1) + a % 1 = a // 1 |
11 |
1, 10 |
ax_mp |
1 * (a // 1) + a % 1 = a -> a // 1 = a |
12 |
|
divmod |
1 * (a // 1) + a % 1 = a |
13 |
11, 12 |
ax_mp |
a // 1 = a |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)