Theorem elnel | index | src |

theorem elnel (a b: nat): $ a e. b <-> odd (shr b a) $;
StepHypRefExpression
1 eqidd
_1 = a -> b = b
2 id
_1 = a -> _1 = a
3 1, 2 shreqd
_1 = a -> shr b _1 = shr b a
4 3 oddeqd
_1 = a -> (odd (shr b _1) <-> odd (shr b a))
5 4 elabe
a e. {_1 | odd (shr b _1)} <-> odd (shr b a)
6 5 conv ns
a e. b <-> odd (shr b a)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)