theorem elneqd (G: wff) (a b c d: nat): $ G -> a = b $ > $ G -> c = d $ > $ G -> (a e. c <-> b e. d) $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hyp h1 | G -> a = b |
|
2 | hyp h2 | G -> c = d |
|
3 | 2 | nseqd | G -> c == d |
4 | 1, 3 | eleqd | G -> (a e. c <-> b e. d) |