Theorem elneq2d | index | src |

theorem elneq2d (G: wff) (a b c: nat):
  $ G -> b = c $ >
  $ G -> (a e. b <-> a e. c) $;
StepHypRefExpression
1 eqidd
G -> a = a
2 hyp h
G -> b = c
3 1, 2 elneqd
G -> (a e. b <-> a e. c)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)