Theorem b1div2 | index | src |

theorem b1div2 (n: nat): $ b1 n // 2 = n $;
StepHypRefExpression
1 d1lt2
1 < 2
2 1 a1i
T. -> 1 < 2
3 b1mul21
2 * n + 1 = b1 n
4 3 a1i
T. -> 2 * n + 1 = b1 n
5 2, 4 eqdivmod
T. -> b1 n // 2 = n /\ b1 n % 2 = 1
6 5 anld
T. -> b1 n // 2 = n
7 6 trud
b1 n // 2 = n

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)