theorem b0div2 (n: nat): $ b0 n // 2 = n $;
Step | Hyp | Ref | Expression |
1 |
|
eqtr3 |
2 * n // 2 = b0 n // 2 -> 2 * n // 2 = n -> b0 n // 2 = n |
2 |
|
diveq1 |
2 * n = b0 n -> 2 * n // 2 = b0 n // 2 |
3 |
|
b0mul21 |
2 * n = b0 n |
4 |
2, 3 |
ax_mp |
2 * n // 2 = b0 n // 2 |
5 |
1, 4 |
ax_mp |
2 * n // 2 = n -> b0 n // 2 = n |
6 |
|
muldiv2 |
2 != 0 -> 2 * n // 2 = n |
7 |
|
d2ne0 |
2 != 0 |
8 |
6, 7 |
ax_mp |
2 * n // 2 = n |
9 |
5, 8 |
ax_mp |
b0 n // 2 = n |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)