Theorem b0can | index | src |

theorem b0can (a b: nat): $ b0 a = b0 b <-> a = b $;
StepHypRefExpression
1 eqeq
b0 a // 2 = a -> b0 b // 2 = b -> (b0 a // 2 = b0 b // 2 <-> a = b)
2 b0div2
b0 a // 2 = a
3 1, 2 ax_mp
b0 b // 2 = b -> (b0 a // 2 = b0 b // 2 <-> a = b)
4 b0div2
b0 b // 2 = b
5 3, 4 ax_mp
b0 a // 2 = b0 b // 2 <-> a = b
6 diveq1
b0 a = b0 b -> b0 a // 2 = b0 b // 2
7 5, 6 sylib
b0 a = b0 b -> a = b
8 b0eq
a = b -> b0 a = b0 b
9 7, 8 ibii
b0 a = b0 b <-> a = b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)