Theorem elb0 | index | src |

theorem elb0 (a b: nat): $ a e. b0 b <-> 0 < a /\ a - 1 e. b $;
StepHypRefExpression
1 bitr3
(a e. shl b 1 <-> a e. b0 b) -> (a e. shl b 1 <-> 0 < a /\ a - 1 e. b) -> (a e. b0 b <-> 0 < a /\ a - 1 e. b)
2 elneq2
shl b 1 = b0 b -> (a e. shl b 1 <-> a e. b0 b)
3 shl12
shl b 1 = b0 b
4 2, 3 ax_mp
a e. shl b 1 <-> a e. b0 b
5 1, 4 ax_mp
(a e. shl b 1 <-> 0 < a /\ a - 1 e. b) -> (a e. b0 b <-> 0 < a /\ a - 1 e. b)
6 elshl
a e. shl b 1 <-> 1 <= a /\ a - 1 e. b
7 6 conv d1, lt
a e. shl b 1 <-> 0 < a /\ a - 1 e. b
8 5, 7 ax_mp
a e. b0 b <-> 0 < a /\ a - 1 e. b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)