Theorem shl12 | index | src |

theorem shl12 (a: nat): $ shl a 1 = b0 a $;
StepHypRefExpression
1 eqtr
shl a 1 = a * 2 -> a * 2 = b0 a -> shl a 1 = b0 a
2 muleq2
2 ^ 1 = 2 -> a * 2 ^ 1 = a * 2
3 2 conv shl
2 ^ 1 = 2 -> shl a 1 = a * 2
4 pow12
2 ^ 1 = 2
5 3, 4 ax_mp
shl a 1 = a * 2
6 1, 5 ax_mp
a * 2 = b0 a -> shl a 1 = b0 a
7 b0mul22
a * 2 = b0 a
8 6, 7 ax_mp
shl a 1 = b0 a

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)