theorem eldiv2 (a b: nat): $ a e. b // 2 <-> suc a e. b $;
| Step | Hyp | Ref | Expression |
| 1 |
|
bitr3 |
(a e. shr b 1 <-> a e. b // 2) -> (a e. shr b 1 <-> suc a e. b) -> (a e. b // 2 <-> suc a e. b) |
| 2 |
|
elneq2 |
shr b 1 = b // 2 -> (a e. shr b 1 <-> a e. b // 2) |
| 3 |
|
shr12 |
shr b 1 = b // 2 |
| 4 |
2, 3 |
ax_mp |
a e. shr b 1 <-> a e. b // 2 |
| 5 |
1, 4 |
ax_mp |
(a e. shr b 1 <-> suc a e. b) -> (a e. b // 2 <-> suc a e. b) |
| 6 |
|
bitr |
(a e. shr b 1 <-> a + 1 e. b) -> (a + 1 e. b <-> suc a e. b) -> (a e. shr b 1 <-> suc a e. b) |
| 7 |
|
elshr |
a e. shr b 1 <-> a + 1 e. b |
| 8 |
6, 7 |
ax_mp |
(a + 1 e. b <-> suc a e. b) -> (a e. shr b 1 <-> suc a e. b) |
| 9 |
|
eleq1 |
a + 1 = suc a -> (a + 1 e. b <-> suc a e. b) |
| 10 |
|
add12 |
a + 1 = suc a |
| 11 |
9, 10 |
ax_mp |
a + 1 e. b <-> suc a e. b |
| 12 |
8, 11 |
ax_mp |
a e. shr b 1 <-> suc a e. b |
| 13 |
5, 12 |
ax_mp |
a e. b // 2 <-> suc a e. b |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)