Theorem elb00 | index | src |

theorem elb00 (b: nat): $ ~0 e. b0 b $;
StepHypRefExpression
1 elb0
0 e. b0 b <-> 0 < 0 /\ 0 - 1 e. b
2 anl
0 < 0 /\ 0 - 1 e. b -> 0 < 0
3 1, 2 sylbi
0 e. b0 b -> 0 < 0
4 ltirr
~0 < 0
5 3, 4 mt
~0 e. b0 b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)