theorem elb00 (b: nat): $ ~0 e. b0 b $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elb0 | 0 e. b0 b <-> 0 < 0 /\ 0 - 1 e. b |
|
2 | anl | 0 < 0 /\ 0 - 1 e. b -> 0 < 0 |
|
3 | 1, 2 | sylbi | 0 e. b0 b -> 0 < 0 |
4 | ltirr | ~0 < 0 |
|
5 | 3, 4 | mt | ~0 e. b0 b |