Theorem elb10 | index | src |

theorem elb10 (b: nat): $ 0 e. b1 b $;
StepHypRefExpression
1 elb1
0 e. b1 b <-> 0 = 0 \/ 0 - 1 e. b
2 orl
0 = 0 -> 0 = 0 \/ 0 - 1 e. b
3 eqid
0 = 0
4 2, 3 ax_mp
0 = 0 \/ 0 - 1 e. b
5 1, 4 mpbir
0 e. b1 b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)