theorem ellower (A: set) (a: nat): $ finite A -> (a e. lower A <-> a e. A) $;
Step | Hyp | Ref | Expression |
1 |
|
bi1 |
(finite A <-> A == lower A) -> finite A -> A == lower A |
2 |
|
eqlower |
finite A <-> A == lower A |
3 |
1, 2 |
ax_mp |
finite A -> A == lower A |
4 |
3 |
eleq2d |
finite A -> (a e. A <-> a e. lower A) |
5 |
4 |
bicomd |
finite A -> (a e. lower A <-> a e. A) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)