theorem lefin (n: nat) {x: nat}: $ finite {x | x <= n} $;
Step | Hyp | Ref | Expression |
1 |
|
lteq2 |
m = suc n -> (y < m <-> y < suc n) |
2 |
1 |
imeq2d |
m = suc n -> (y e. {x | x <= n} -> y < m <-> y e. {x | x <= n} -> y < suc n) |
3 |
2 |
aleqd |
m = suc n -> (A. y (y e. {x | x <= n} -> y < m) <-> A. y (y e. {x | x <= n} -> y < suc n)) |
4 |
3 |
iexe |
A. y (y e. {x | x <= n} -> y < suc n) -> E. m A. y (y e. {x | x <= n} -> y < m) |
5 |
4 |
conv finite |
A. y (y e. {x | x <= n} -> y < suc n) -> finite {x | x <= n} |
6 |
|
leeq1 |
x = y -> (x <= n <-> y <= n) |
7 |
6 |
elabe |
y e. {x | x <= n} <-> y <= n |
8 |
|
leltsuc |
y <= n <-> y < suc n |
9 |
8 |
bi1i |
y <= n -> y < suc n |
10 |
7, 9 |
sylbi |
y e. {x | x <= n} -> y < suc n |
11 |
10 |
ax_gen |
A. y (y e. {x | x <= n} -> y < suc n) |
12 |
5, 11 |
ax_mp |
finite {x | x <= n} |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_peano
(peano2,
peano5,
addeq,
add0,
addS)