theorem lefin (n: nat) {x: nat}: $ finite {x | x <= n} $;
    
      
        | Step | Hyp | Ref | Expression | 
        
          | 1 | 
           | 
          lteq2 | 
          m = suc n -> (y < m <-> y < suc n)  | 
        
        
          | 2 | 
          1 | 
          imeq2d | 
          m = suc n -> (y e. {x | x <= n} -> y < m <-> y e. {x | x <= n} -> y < suc n) | 
        
        
          | 3 | 
          2 | 
          aleqd | 
          m = suc n -> (A. y (y e. {x | x <= n} -> y < m) <-> A. y (y e. {x | x <= n} -> y < suc n)) | 
        
        
          | 4 | 
          3 | 
          iexe | 
          A. y (y e. {x | x <= n} -> y < suc n) -> E. m A. y (y e. {x | x <= n} -> y < m) | 
        
        
          | 5 | 
          4 | 
          conv finite | 
          A. y (y e. {x | x <= n} -> y < suc n) -> finite {x | x <= n} | 
        
        
          | 6 | 
           | 
          leeq1 | 
          x = y -> (x <= n <-> y <= n)  | 
        
        
          | 7 | 
          6 | 
          elabe | 
          y e. {x | x <= n} <-> y <= n | 
        
        
          | 8 | 
           | 
          leltsuc | 
          y <= n <-> y < suc n  | 
        
        
          | 9 | 
          8 | 
          bi1i | 
          y <= n -> y < suc n  | 
        
        
          | 10 | 
          7, 9 | 
          sylbi | 
          y e. {x | x <= n} -> y < suc n | 
        
        
          | 11 | 
          10 | 
          ax_gen | 
          A. y (y e. {x | x <= n} -> y < suc n) | 
        
        
          | 12 | 
          5, 11 | 
          ax_mp | 
          finite {x | x <= n} | 
        
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8),
    
axs_peano
     (peano2,
      peano5,
      addeq,
      add0,
      addS)