Theorem lefin | index | src |

theorem lefin (n: nat) {x: nat}: $ finite {x | x <= n} $;
StepHypRefExpression
1 lteq2
m = suc n -> (y < m <-> y < suc n)
2 1 imeq2d
m = suc n -> (y e. {x | x <= n} -> y < m <-> y e. {x | x <= n} -> y < suc n)
3 2 aleqd
m = suc n -> (A. y (y e. {x | x <= n} -> y < m) <-> A. y (y e. {x | x <= n} -> y < suc n))
4 3 iexe
A. y (y e. {x | x <= n} -> y < suc n) -> E. m A. y (y e. {x | x <= n} -> y < m)
5 4 conv finite
A. y (y e. {x | x <= n} -> y < suc n) -> finite {x | x <= n}
6 leeq1
x = y -> (x <= n <-> y <= n)
7 6 elabe
y e. {x | x <= n} <-> y <= n
8 leltsuc
y <= n <-> y < suc n
9 8 bi1i
y <= n -> y < suc n
10 7, 9 sylbi
y e. {x | x <= n} -> y < suc n
11 10 ax_gen
A. y (y e. {x | x <= n} -> y < suc n)
12 5, 11 ax_mp
finite {x | x <= n}

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_peano (peano2, peano5, addeq, add0, addS)