Theorem ltfin | index | src |

theorem ltfin (n: nat) {x: nat}: $ finite {x | x < n} $;
StepHypRefExpression
1 lteq2
m = n -> (y < m <-> y < n)
2 1 imeq2d
m = n -> (y e. {x | x < n} -> y < m <-> y e. {x | x < n} -> y < n)
3 2 aleqd
m = n -> (A. y (y e. {x | x < n} -> y < m) <-> A. y (y e. {x | x < n} -> y < n))
4 3 iexe
A. y (y e. {x | x < n} -> y < n) -> E. m A. y (y e. {x | x < n} -> y < m)
5 4 conv finite
A. y (y e. {x | x < n} -> y < n) -> finite {x | x < n}
6 lteq1
x = y -> (x < n <-> y < n)
7 6 elabe
y e. {x | x < n} <-> y < n
8 7 bi1i
y e. {x | x < n} -> y < n
9 8 ax_gen
A. y (y e. {x | x < n} -> y < n)
10 5, 9 ax_mp
finite {x | x < n}

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_peano (peano2, addeq)