Theorem finss | index | src |

theorem finss (A B: set): $ A C_ B -> finite B -> finite A $;
StepHypRefExpression
1 ssel
A C_ B -> x e. A -> x e. B
2 1 imim1d
A C_ B -> (x e. B -> x < n) -> x e. A -> x < n
3 2 alimd
A C_ B -> A. x (x e. B -> x < n) -> A. x (x e. A -> x < n)
4 3 eximd
A C_ B -> E. n A. x (x e. B -> x < n) -> E. n A. x (x e. A -> x < n)
5 4 conv finite
A C_ B -> finite B -> finite A

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_12), axs_set (ax_8)