Theorem nffin | index | src |

theorem nffin {x: nat} (A: set x): $ FS/ x A $ > $ F/ x finite A $;
StepHypRefExpression
1 hyp h
FS/ x A
2 1 nfel2
F/ x a2 e. A
3 nfv
F/ x a2 < a1
4 2, 3 nfim
F/ x a2 e. A -> a2 < a1
5 4 nfal
F/ x A. a2 (a2 e. A -> a2 < a1)
6 5 nfex
F/ x E. a1 A. a2 (a2 e. A -> a2 < a1)
7 6 conv finite
F/ x finite A

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (ax_8)