theorem eximd {x: nat} (G: wff) (a b: wff x): $ G -> a -> b $ > $ G -> E. x a -> E. x b $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exim | A. x (a -> b) -> E. x a -> E. x b |
|
2 | hyp h | G -> a -> b |
|
3 | 2 | iald | G -> A. x (a -> b) |
4 | 1, 3 | syl | G -> E. x a -> E. x b |