Theorem eximd | index | src |

theorem eximd {x: nat} (G: wff) (a b: wff x):
  $ G -> a -> b $ >
  $ G -> E. x a -> E. x b $;
StepHypRefExpression
1 exim
A. x (a -> b) -> E. x a -> E. x b
2 hyp h
G -> a -> b
3 2 iald
G -> A. x (a -> b)
4 1, 3 syl
G -> E. x a -> E. x b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4, ax_5)