theorem eximd {x: nat} (G: wff) (a b: wff x):
$ G -> a -> b $ >
$ G -> E. x a -> E. x b $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exim | A. x (a -> b) -> E. x a -> E. x b |
|
| 2 | hyp h | G -> a -> b |
|
| 3 | 2 | iald | G -> A. x (a -> b) |
| 4 | 1, 3 | syl | G -> E. x a -> E. x b |