theorem snfin (n: nat) {x: nat}: $ finite {x | x = n} $;
Step | Hyp | Ref | Expression |
1 |
|
finss |
{x | x = n} C_ {x | x <= n} -> finite {x | x <= n} -> finite {x | x = n} |
2 |
|
ssab |
A. x (x = n -> x <= n) <-> {x | x = n} C_ {x | x <= n} |
3 |
|
eqle |
x = n -> x <= n |
4 |
3 |
ax_gen |
A. x (x = n -> x <= n) |
5 |
2, 4 |
mpbi |
{x | x = n} C_ {x | x <= n} |
6 |
1, 5 |
ax_mp |
finite {x | x <= n} -> finite {x | x = n} |
7 |
|
lefin |
finite {x | x <= n} |
8 |
6, 7 |
ax_mp |
finite {x | x = n} |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_peano
(peano2,
peano5,
addeq,
add0,
addS)