Theorem snfin | index | src |

theorem snfin (n: nat) {x: nat}: $ finite {x | x = n} $;
StepHypRefExpression
1 finss
{x | x = n} C_ {x | x <= n} -> finite {x | x <= n} -> finite {x | x = n}
2 ssab
A. x (x = n -> x <= n) <-> {x | x = n} C_ {x | x <= n}
3 eqle
x = n -> x <= n
4 3 ax_gen
A. x (x = n -> x <= n)
5 2, 4 mpbi
{x | x = n} C_ {x | x <= n}
6 1, 5 ax_mp
finite {x | x <= n} -> finite {x | x = n}
7 lefin
finite {x | x <= n}
8 6, 7 ax_mp
finite {x | x = n}

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_peano (peano2, peano5, addeq, add0, addS)