pub theorem ellt (a b: nat): $ a e. b -> a < b $;
Step | Hyp | Ref | Expression |
1 |
|
elnel |
a e. b <-> odd (shr b a) |
2 |
|
dfodd2 |
odd (shr b a) <-> true (shr b a % 2) |
3 |
|
con1 |
(~a < b -> shr b a % 2 = 0) -> ~shr b a % 2 = 0 -> a < b |
4 |
3 |
conv ne, true |
(~a < b -> shr b a % 2 = 0) -> true (shr b a % 2) -> a < b |
5 |
|
lenlt |
b <= a <-> ~a < b |
6 |
|
mod01 |
0 % 2 = 0 |
7 |
|
diveq0 |
2 ^ a != 0 -> (b // 2 ^ a = 0 <-> b < 2 ^ a) |
8 |
7 |
conv shr |
2 ^ a != 0 -> (shr b a = 0 <-> b < 2 ^ a) |
9 |
|
pow2ne0 |
2 ^ a != 0 |
10 |
8, 9 |
ax_mp |
shr b a = 0 <-> b < 2 ^ a |
11 |
|
powltid2 |
1 < 2 -> a < 2 ^ a |
12 |
|
d1lt2 |
1 < 2 |
13 |
11, 12 |
ax_mp |
a < 2 ^ a |
14 |
|
lelttr |
b <= a -> a < 2 ^ a -> b < 2 ^ a |
15 |
13, 14 |
mpi |
b <= a -> b < 2 ^ a |
16 |
10, 15 |
sylibr |
b <= a -> shr b a = 0 |
17 |
16 |
modeq1d |
b <= a -> shr b a % 2 = 0 % 2 |
18 |
6, 17 |
syl6eq |
b <= a -> shr b a % 2 = 0 |
19 |
5, 18 |
sylbir |
~a < b -> shr b a % 2 = 0 |
20 |
4, 19 |
ax_mp |
true (shr b a % 2) -> a < b |
21 |
2, 20 |
sylbi |
odd (shr b a) -> a < b |
22 |
1, 21 |
sylbi |
a e. b -> a < b |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)