Theorem diveq0 | index | src |

theorem diveq0 (a b: nat): $ b != 0 -> (a // b = 0 <-> a < b) $;
StepHypRefExpression
1 lt12
a // b < 1 <-> a // b = 0
2 lteq2
b * 1 = b -> (a < b * 1 <-> a < b)
3 mul12
b * 1 = b
4 2, 3 ax_mp
a < b * 1 <-> a < b
5 divltmul1
b != 0 -> (a // b < 1 <-> a < b * 1)
6 4, 5 syl6bb
b != 0 -> (a // b < 1 <-> a < b)
7 1, 6 syl5bbr
b != 0 -> (a // b = 0 <-> a < b)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)