Step | Hyp | Ref | Expression |
1 |
|
div01 |
0 // c = 0 |
2 |
|
div0 |
a // 0 = 0 |
3 |
|
diveq2 |
b = 0 -> a // b = a // 0 |
4 |
2, 3 |
syl6eq |
b = 0 -> a // b = 0 |
5 |
4 |
diveq1d |
b = 0 -> a // b // c = 0 // c |
6 |
1, 5 |
syl6eq |
b = 0 -> a // b // c = 0 |
7 |
|
mul01 |
0 * c = 0 |
8 |
|
muleq1 |
b = 0 -> b * c = 0 * c |
9 |
7, 8 |
syl6eq |
b = 0 -> b * c = 0 |
10 |
9 |
diveq2d |
b = 0 -> a // (b * c) = a // 0 |
11 |
2, 10 |
syl6eq |
b = 0 -> a // (b * c) = 0 |
12 |
6, 11 |
eqtr4d |
b = 0 -> a // b // c = a // (b * c) |
13 |
|
div0 |
a // b // 0 = 0 |
14 |
|
diveq2 |
c = 0 -> a // b // c = a // b // 0 |
15 |
13, 14 |
syl6eq |
c = 0 -> a // b // c = 0 |
16 |
|
mul02 |
b * 0 = 0 |
17 |
|
muleq2 |
c = 0 -> b * c = b * 0 |
18 |
16, 17 |
syl6eq |
c = 0 -> b * c = 0 |
19 |
18 |
diveq2d |
c = 0 -> a // (b * c) = a // 0 |
20 |
2, 19 |
syl6eq |
c = 0 -> a // (b * c) = 0 |
21 |
15, 20 |
eqtr4d |
c = 0 -> a // b // c = a // (b * c) |
22 |
21 |
anwr |
~b = 0 /\ c = 0 -> a // b // c = a // (b * c) |
23 |
|
mulne0 |
b * c != 0 <-> b != 0 /\ c != 0 |
24 |
23 |
conv ne |
b * c != 0 <-> ~b = 0 /\ ~c = 0 |
25 |
|
ledivmul1 |
b * c != 0 -> (a // b // c <= a // (b * c) <-> b * c * (a // b // c) <= a) |
26 |
24, 25 |
sylbir |
~b = 0 /\ ~c = 0 -> (a // b // c <= a // (b * c) <-> b * c * (a // b // c) <= a) |
27 |
|
leeq1 |
b * c * (a // b // c) = b * (c * (a // b // c)) -> (b * c * (a // b // c) <= a <-> b * (c * (a // b // c)) <= a) |
28 |
|
mulass |
b * c * (a // b // c) = b * (c * (a // b // c)) |
29 |
27, 28 |
ax_mp |
b * c * (a // b // c) <= a <-> b * (c * (a // b // c)) <= a |
30 |
|
letr |
b * (c * (a // b // c)) <= b * (a // b) -> b * (a // b) <= a -> b * (c * (a // b // c)) <= a |
31 |
|
lemul2a |
c * (a // b // c) <= a // b -> b * (c * (a // b // c)) <= b * (a // b) |
32 |
|
muldivle |
c * (a // b // c) <= a // b |
33 |
31, 32 |
ax_mp |
b * (c * (a // b // c)) <= b * (a // b) |
34 |
30, 33 |
ax_mp |
b * (a // b) <= a -> b * (c * (a // b // c)) <= a |
35 |
|
muldivle |
b * (a // b) <= a |
36 |
34, 35 |
ax_mp |
b * (c * (a // b // c)) <= a |
37 |
29, 36 |
mpbir |
b * c * (a // b // c) <= a |
38 |
37 |
a1i |
~b = 0 /\ ~c = 0 -> b * c * (a // b // c) <= a |
39 |
26, 38 |
mpbird |
~b = 0 /\ ~c = 0 -> a // b // c <= a // (b * c) |
40 |
|
ledivmul1 |
c != 0 -> (a // (b * c) <= a // b // c <-> c * (a // (b * c)) <= a // b) |
41 |
40 |
conv ne |
~c = 0 -> (a // (b * c) <= a // b // c <-> c * (a // (b * c)) <= a // b) |
42 |
41 |
anwr |
~b = 0 /\ ~c = 0 -> (a // (b * c) <= a // b // c <-> c * (a // (b * c)) <= a // b) |
43 |
|
ledivmul1 |
b != 0 -> (c * (a // (b * c)) <= a // b <-> b * (c * (a // (b * c))) <= a) |
44 |
43 |
conv ne |
~b = 0 -> (c * (a // (b * c)) <= a // b <-> b * (c * (a // (b * c))) <= a) |
45 |
44 |
anwl |
~b = 0 /\ ~c = 0 -> (c * (a // (b * c)) <= a // b <-> b * (c * (a // (b * c))) <= a) |
46 |
|
leeq1 |
b * c * (a // (b * c)) = b * (c * (a // (b * c))) -> (b * c * (a // (b * c)) <= a <-> b * (c * (a // (b * c))) <= a) |
47 |
|
mulass |
b * c * (a // (b * c)) = b * (c * (a // (b * c))) |
48 |
46, 47 |
ax_mp |
b * c * (a // (b * c)) <= a <-> b * (c * (a // (b * c))) <= a |
49 |
|
muldivle |
b * c * (a // (b * c)) <= a |
50 |
48, 49 |
mpbi |
b * (c * (a // (b * c))) <= a |
51 |
50 |
a1i |
~b = 0 /\ ~c = 0 -> b * (c * (a // (b * c))) <= a |
52 |
45, 51 |
mpbird |
~b = 0 /\ ~c = 0 -> c * (a // (b * c)) <= a // b |
53 |
42, 52 |
mpbird |
~b = 0 /\ ~c = 0 -> a // (b * c) <= a // b // c |
54 |
39, 53 |
leasymd |
~b = 0 /\ ~c = 0 -> a // b // c = a // (b * c) |
55 |
22, 54 |
casesda |
~b = 0 -> a // b // c = a // (b * c) |
56 |
12, 55 |
cases |
a // b // c = a // (b * c) |