| Step | Hyp | Ref | Expression |
| 1 |
|
div01 |
0 // c = 0 |
| 2 |
|
div0 |
a // 0 = 0 |
| 3 |
|
diveq2 |
b = 0 -> a // b = a // 0 |
| 4 |
2, 3 |
syl6eq |
b = 0 -> a // b = 0 |
| 5 |
4 |
diveq1d |
b = 0 -> a // b // c = 0 // c |
| 6 |
1, 5 |
syl6eq |
b = 0 -> a // b // c = 0 |
| 7 |
|
mul01 |
0 * c = 0 |
| 8 |
|
muleq1 |
b = 0 -> b * c = 0 * c |
| 9 |
7, 8 |
syl6eq |
b = 0 -> b * c = 0 |
| 10 |
9 |
diveq2d |
b = 0 -> a // (b * c) = a // 0 |
| 11 |
2, 10 |
syl6eq |
b = 0 -> a // (b * c) = 0 |
| 12 |
6, 11 |
eqtr4d |
b = 0 -> a // b // c = a // (b * c) |
| 13 |
|
div0 |
a // b // 0 = 0 |
| 14 |
|
diveq2 |
c = 0 -> a // b // c = a // b // 0 |
| 15 |
13, 14 |
syl6eq |
c = 0 -> a // b // c = 0 |
| 16 |
|
mul02 |
b * 0 = 0 |
| 17 |
|
muleq2 |
c = 0 -> b * c = b * 0 |
| 18 |
16, 17 |
syl6eq |
c = 0 -> b * c = 0 |
| 19 |
18 |
diveq2d |
c = 0 -> a // (b * c) = a // 0 |
| 20 |
2, 19 |
syl6eq |
c = 0 -> a // (b * c) = 0 |
| 21 |
15, 20 |
eqtr4d |
c = 0 -> a // b // c = a // (b * c) |
| 22 |
21 |
anwr |
~b = 0 /\ c = 0 -> a // b // c = a // (b * c) |
| 23 |
|
mulne0 |
b * c != 0 <-> b != 0 /\ c != 0 |
| 24 |
23 |
conv ne |
b * c != 0 <-> ~b = 0 /\ ~c = 0 |
| 25 |
|
ledivmul1 |
b * c != 0 -> (a // b // c <= a // (b * c) <-> b * c * (a // b // c) <= a) |
| 26 |
24, 25 |
sylbir |
~b = 0 /\ ~c = 0 -> (a // b // c <= a // (b * c) <-> b * c * (a // b // c) <= a) |
| 27 |
|
leeq1 |
b * c * (a // b // c) = b * (c * (a // b // c)) -> (b * c * (a // b // c) <= a <-> b * (c * (a // b // c)) <= a) |
| 28 |
|
mulass |
b * c * (a // b // c) = b * (c * (a // b // c)) |
| 29 |
27, 28 |
ax_mp |
b * c * (a // b // c) <= a <-> b * (c * (a // b // c)) <= a |
| 30 |
|
letr |
b * (c * (a // b // c)) <= b * (a // b) -> b * (a // b) <= a -> b * (c * (a // b // c)) <= a |
| 31 |
|
lemul2a |
c * (a // b // c) <= a // b -> b * (c * (a // b // c)) <= b * (a // b) |
| 32 |
|
muldivle |
c * (a // b // c) <= a // b |
| 33 |
31, 32 |
ax_mp |
b * (c * (a // b // c)) <= b * (a // b) |
| 34 |
30, 33 |
ax_mp |
b * (a // b) <= a -> b * (c * (a // b // c)) <= a |
| 35 |
|
muldivle |
b * (a // b) <= a |
| 36 |
34, 35 |
ax_mp |
b * (c * (a // b // c)) <= a |
| 37 |
29, 36 |
mpbir |
b * c * (a // b // c) <= a |
| 38 |
37 |
a1i |
~b = 0 /\ ~c = 0 -> b * c * (a // b // c) <= a |
| 39 |
26, 38 |
mpbird |
~b = 0 /\ ~c = 0 -> a // b // c <= a // (b * c) |
| 40 |
|
ledivmul1 |
c != 0 -> (a // (b * c) <= a // b // c <-> c * (a // (b * c)) <= a // b) |
| 41 |
40 |
conv ne |
~c = 0 -> (a // (b * c) <= a // b // c <-> c * (a // (b * c)) <= a // b) |
| 42 |
41 |
anwr |
~b = 0 /\ ~c = 0 -> (a // (b * c) <= a // b // c <-> c * (a // (b * c)) <= a // b) |
| 43 |
|
ledivmul1 |
b != 0 -> (c * (a // (b * c)) <= a // b <-> b * (c * (a // (b * c))) <= a) |
| 44 |
43 |
conv ne |
~b = 0 -> (c * (a // (b * c)) <= a // b <-> b * (c * (a // (b * c))) <= a) |
| 45 |
44 |
anwl |
~b = 0 /\ ~c = 0 -> (c * (a // (b * c)) <= a // b <-> b * (c * (a // (b * c))) <= a) |
| 46 |
|
leeq1 |
b * c * (a // (b * c)) = b * (c * (a // (b * c))) -> (b * c * (a // (b * c)) <= a <-> b * (c * (a // (b * c))) <= a) |
| 47 |
|
mulass |
b * c * (a // (b * c)) = b * (c * (a // (b * c))) |
| 48 |
46, 47 |
ax_mp |
b * c * (a // (b * c)) <= a <-> b * (c * (a // (b * c))) <= a |
| 49 |
|
muldivle |
b * c * (a // (b * c)) <= a |
| 50 |
48, 49 |
mpbi |
b * (c * (a // (b * c))) <= a |
| 51 |
50 |
a1i |
~b = 0 /\ ~c = 0 -> b * (c * (a // (b * c))) <= a |
| 52 |
45, 51 |
mpbird |
~b = 0 /\ ~c = 0 -> c * (a // (b * c)) <= a // b |
| 53 |
42, 52 |
mpbird |
~b = 0 /\ ~c = 0 -> a // (b * c) <= a // b // c |
| 54 |
39, 53 |
leasymd |
~b = 0 /\ ~c = 0 -> a // b // c = a // (b * c) |
| 55 |
22, 54 |
casesda |
~b = 0 -> a // b // c = a // (b * c) |
| 56 |
12, 55 |
cases |
a // b // c = a // (b * c) |