theorem ledivmul1 (a b c: nat): $ c != 0 -> (a <= b // c <-> c * a <= b) $;
Step | Hyp | Ref | Expression |
1 |
|
lemul2a |
a <= b // c -> c * a <= c * (b // c) |
2 |
1 |
anwr |
c != 0 /\ a <= b // c -> c * a <= c * (b // c) |
3 |
|
muldivle |
c * (b // c) <= b |
4 |
3 |
a1i |
c != 0 /\ a <= b // c -> c * (b // c) <= b |
5 |
2, 4 |
letrd |
c != 0 /\ a <= b // c -> c * a <= b |
6 |
|
leltsuc |
a <= b // c <-> a < suc (b // c) |
7 |
|
ltmul2 |
0 < c -> (a < suc (b // c) <-> c * a < c * suc (b // c)) |
8 |
|
lt01 |
0 < c <-> c != 0 |
9 |
|
anl |
c != 0 /\ c * a <= b -> c != 0 |
10 |
8, 9 |
sylibr |
c != 0 /\ c * a <= b -> 0 < c |
11 |
7, 10 |
syl |
c != 0 /\ c * a <= b -> (a < suc (b // c) <-> c * a < c * suc (b // c)) |
12 |
|
anr |
c != 0 /\ c * a <= b -> c * a <= b |
13 |
|
lteq2 |
c * suc (b // c) = c * (b // c) + c -> (b < c * suc (b // c) <-> b < c * (b // c) + c) |
14 |
|
mulS |
c * suc (b // c) = c * (b // c) + c |
15 |
13, 14 |
ax_mp |
b < c * suc (b // c) <-> b < c * (b // c) + c |
16 |
|
lteq1 |
c * (b // c) + b % c = b -> (c * (b // c) + b % c < c * (b // c) + c <-> b < c * (b // c) + c) |
17 |
|
divmod |
c * (b // c) + b % c = b |
18 |
16, 17 |
ax_mp |
c * (b // c) + b % c < c * (b // c) + c <-> b < c * (b // c) + c |
19 |
|
ltadd2 |
b % c < c <-> c * (b // c) + b % c < c * (b // c) + c |
20 |
|
modlt |
c != 0 -> b % c < c |
21 |
19, 20 |
sylib |
c != 0 -> c * (b // c) + b % c < c * (b // c) + c |
22 |
18, 21 |
sylib |
c != 0 -> b < c * (b // c) + c |
23 |
15, 22 |
sylibr |
c != 0 -> b < c * suc (b // c) |
24 |
23 |
anwl |
c != 0 /\ c * a <= b -> b < c * suc (b // c) |
25 |
12, 24 |
lelttrd |
c != 0 /\ c * a <= b -> c * a < c * suc (b // c) |
26 |
11, 25 |
mpbird |
c != 0 /\ c * a <= b -> a < suc (b // c) |
27 |
6, 26 |
sylibr |
c != 0 /\ c * a <= b -> a <= b // c |
28 |
5, 27 |
ibida |
c != 0 -> (a <= b // c <-> c * a <= b) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)