theorem divleid (a b: nat): $ a // b <= a $;
Step | Hyp | Ref | Expression |
1 |
|
le01 |
0 <= a |
2 |
|
div0 |
a // 0 = 0 |
3 |
|
diveq2 |
b = 0 -> a // b = a // 0 |
4 |
2, 3 |
syl6eq |
b = 0 -> a // b = 0 |
5 |
4 |
leeq1d |
b = 0 -> (a // b <= a <-> 0 <= a) |
6 |
1, 5 |
mpbiri |
b = 0 -> a // b <= a |
7 |
|
leeq1 |
1 * (a // b) = a // b -> (1 * (a // b) <= b * (a // b) <-> a // b <= b * (a // b)) |
8 |
|
mul11 |
1 * (a // b) = a // b |
9 |
7, 8 |
ax_mp |
1 * (a // b) <= b * (a // b) <-> a // b <= b * (a // b) |
10 |
|
le11 |
1 <= b <-> b != 0 |
11 |
10 |
conv ne |
1 <= b <-> ~b = 0 |
12 |
|
lemul1a |
1 <= b -> 1 * (a // b) <= b * (a // b) |
13 |
11, 12 |
sylbir |
~b = 0 -> 1 * (a // b) <= b * (a // b) |
14 |
9, 13 |
sylib |
~b = 0 -> a // b <= b * (a // b) |
15 |
|
muldivle |
b * (a // b) <= a |
16 |
15 |
a1i |
~b = 0 -> b * (a // b) <= a |
17 |
14, 16 |
letrd |
~b = 0 -> a // b <= a |
18 |
6, 17 |
cases |
a // b <= a |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)