Theorem divlemul2r | index | src |

theorem divlemul2r (a b c: nat): $ b != 0 -> a <= c * b -> a // b <= c $;
StepHypRefExpression
1 leeq2
c * b = b * c -> (a <= c * b <-> a <= b * c)
2 mulcom
c * b = b * c
3 1, 2 ax_mp
a <= c * b <-> a <= b * c
4 divlemul1r
b != 0 -> a <= b * c -> a // b <= c
5 3, 4 syl5bi
b != 0 -> a <= c * b -> a // b <= c

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)