theorem divlemul1r (a b c: nat): $ b != 0 -> a <= b * c -> a // b <= c $;
Step | Hyp | Ref | Expression |
1 |
|
muldiv2 |
b != 0 -> b * c // b = c |
2 |
1 |
anwl |
b != 0 /\ a <= b * c -> b * c // b = c |
3 |
2 |
leeq2d |
b != 0 /\ a <= b * c -> (a // b <= b * c // b <-> a // b <= c) |
4 |
|
lediv1 |
a <= b * c -> a // b <= b * c // b |
5 |
4 |
anwr |
b != 0 /\ a <= b * c -> a // b <= b * c // b |
6 |
3, 5 |
mpbid |
b != 0 /\ a <= b * c -> a // b <= c |
7 |
6 |
exp |
b != 0 -> a <= b * c -> a // b <= c |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)