Theorem divlemul1r | index | src |

theorem divlemul1r (a b c: nat): $ b != 0 -> a <= b * c -> a // b <= c $;
StepHypRefExpression
1 muldiv2
b != 0 -> b * c // b = c
2 1 anwl
b != 0 /\ a <= b * c -> b * c // b = c
3 2 leeq2d
b != 0 /\ a <= b * c -> (a // b <= b * c // b <-> a // b <= c)
4 lediv1
a <= b * c -> a // b <= b * c // b
5 4 anwr
b != 0 /\ a <= b * c -> a // b <= b * c // b
6 3, 5 mpbid
b != 0 /\ a <= b * c -> a // b <= c
7 6 exp
b != 0 -> a <= b * c -> a // b <= c

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)