theorem lediv1 (a b c: nat): $ a <= b -> a // c <= b // c $;
Step | Hyp | Ref | Expression |
1 |
|
le01 |
0 <= b // c |
2 |
|
div0 |
a // 0 = 0 |
3 |
|
diveq2 |
c = 0 -> a // c = a // 0 |
4 |
3 |
anwr |
a <= b /\ c = 0 -> a // c = a // 0 |
5 |
2, 4 |
syl6eq |
a <= b /\ c = 0 -> a // c = 0 |
6 |
5 |
leeq1d |
a <= b /\ c = 0 -> (a // c <= b // c <-> 0 <= b // c) |
7 |
1, 6 |
mpbiri |
a <= b /\ c = 0 -> a // c <= b // c |
8 |
|
modlt |
c != 0 -> a % c < c |
9 |
8 |
conv ne |
~c = 0 -> a % c < c |
10 |
9 |
anwr |
a <= b /\ ~c = 0 -> a % c < c |
11 |
|
modlt |
c != 0 -> b % c < c |
12 |
11 |
conv ne |
~c = 0 -> b % c < c |
13 |
12 |
anwr |
a <= b /\ ~c = 0 -> b % c < c |
14 |
|
leeq |
c * (a // c) + a % c = a -> c * (b // c) + b % c = b -> (c * (a // c) + a % c <= c * (b // c) + b % c <-> a <= b) |
15 |
|
divmod |
c * (a // c) + a % c = a |
16 |
14, 15 |
ax_mp |
c * (b // c) + b % c = b -> (c * (a // c) + a % c <= c * (b // c) + b % c <-> a <= b) |
17 |
|
divmod |
c * (b // c) + b % c = b |
18 |
16, 17 |
ax_mp |
c * (a // c) + a % c <= c * (b // c) + b % c <-> a <= b |
19 |
|
anl |
a <= b /\ ~c = 0 -> a <= b |
20 |
18, 19 |
sylibr |
a <= b /\ ~c = 0 -> c * (a // c) + a % c <= c * (b // c) + b % c |
21 |
10, 13, 20 |
divlem1 |
a <= b /\ ~c = 0 -> a // c <= b // c |
22 |
7, 21 |
casesda |
a <= b -> a // c <= b // c |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)