Theorem mod01 | index | src |

theorem mod01 (a: nat): $ 0 % a = 0 $;
StepHypRefExpression
1 mod0
0 % 0 = 0
2 modeq2
a = 0 -> 0 % a = 0 % 0
3 1, 2 syl6eq
a = 0 -> 0 % a = 0
4 bi2
(0 < a <-> ~a = 0) -> ~a = 0 -> 0 < a
5 lt01
0 < a <-> a != 0
6 5 conv ne
0 < a <-> ~a = 0
7 4, 6 ax_mp
~a = 0 -> 0 < a
8 eqtr
a * 0 + 0 = a * 0 -> a * 0 = 0 -> a * 0 + 0 = 0
9 add0
a * 0 + 0 = a * 0
10 8, 9 ax_mp
a * 0 = 0 -> a * 0 + 0 = 0
11 mul0
a * 0 = 0
12 10, 11 ax_mp
a * 0 + 0 = 0
13 12 a1i
~a = 0 -> a * 0 + 0 = 0
14 7, 13 eqdivmod
~a = 0 -> 0 // a = 0 /\ 0 % a = 0
15 14 anrd
~a = 0 -> 0 % a = 0
16 3, 15 cases
0 % a = 0

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)