Step | Hyp | Ref | Expression |
1 |
|
bitr4 |
(x e. Dom (write F a b) <-> x = a \/ x e. Dom F) -> (x e. Dom F u. sn a <-> x = a \/ x e. Dom F) -> (x e. Dom (write F a b) <-> x e. Dom F u. sn a) |
2 |
|
eldm |
x e. Dom (write F a b) <-> E. y x, y e. write F a b |
3 |
|
elwrite |
x, y e. write F a b <-> ifp (x = a) (y = b) (x, y e. F) |
4 |
|
preldm |
x, y e. F -> x e. Dom F |
5 |
|
ifpneg |
~x = a -> (ifp (x = a) (y = b) (x, y e. F) <-> x, y e. F) |
6 |
5 |
bi1d |
~x = a -> ifp (x = a) (y = b) (x, y e. F) -> x, y e. F |
7 |
4, 6 |
syl6 |
~x = a -> ifp (x = a) (y = b) (x, y e. F) -> x e. Dom F |
8 |
7 |
com12 |
ifp (x = a) (y = b) (x, y e. F) -> ~x = a -> x e. Dom F |
9 |
8 |
conv or |
ifp (x = a) (y = b) (x, y e. F) -> x = a \/ x e. Dom F |
10 |
3, 9 |
sylbi |
x, y e. write F a b -> x = a \/ x e. Dom F |
11 |
10 |
eex |
E. y x, y e. write F a b -> x = a \/ x e. Dom F |
12 |
2, 11 |
sylbi |
x e. Dom (write F a b) -> x = a \/ x e. Dom F |
13 |
|
preldm |
x, b e. write F a b -> x e. Dom (write F a b) |
14 |
|
elwrite |
x, b e. write F a b <-> ifp (x = a) (b = b) (x, b e. F) |
15 |
|
eqid |
b = b |
16 |
|
ifppos |
x = a -> (ifp (x = a) (b = b) (x, b e. F) <-> b = b) |
17 |
15, 16 |
mpbiri |
x = a -> ifp (x = a) (b = b) (x, b e. F) |
18 |
14, 17 |
sylibr |
x = a -> x, b e. write F a b |
19 |
13, 18 |
syl |
x = a -> x e. Dom (write F a b) |
20 |
19 |
a1i |
x = a \/ x e. Dom F -> x = a -> x e. Dom (write F a b) |
21 |
|
eldm |
x e. Dom F <-> E. y x, y e. F |
22 |
|
preldm |
x, y e. write F a b -> x e. Dom (write F a b) |
23 |
3, 5 |
syl5bb |
~x = a -> (x, y e. write F a b <-> x, y e. F) |
24 |
23 |
imeq1d |
~x = a -> (x, y e. write F a b -> x e. Dom (write F a b) <-> x, y e. F -> x e. Dom (write F a b)) |
25 |
22, 24 |
mpbii |
~x = a -> x, y e. F -> x e. Dom (write F a b) |
26 |
25 |
eexd |
~x = a -> E. y x, y e. F -> x e. Dom (write F a b) |
27 |
21, 26 |
syl5bi |
~x = a -> x e. Dom F -> x e. Dom (write F a b) |
28 |
27 |
a2i |
(~x = a -> x e. Dom F) -> ~x = a -> x e. Dom (write F a b) |
29 |
28 |
conv or |
x = a \/ x e. Dom F -> ~x = a -> x e. Dom (write F a b) |
30 |
20, 29 |
casesd |
x = a \/ x e. Dom F -> x e. Dom (write F a b) |
31 |
12, 30 |
ibii |
x e. Dom (write F a b) <-> x = a \/ x e. Dom F |
32 |
1, 31 |
ax_mp |
(x e. Dom F u. sn a <-> x = a \/ x e. Dom F) -> (x e. Dom (write F a b) <-> x e. Dom F u. sn a) |
33 |
|
bitr |
(x e. Dom F u. sn a <-> x e. Dom F \/ x e. sn a) -> (x e. Dom F \/ x e. sn a <-> x = a \/ x e. Dom F) -> (x e. Dom F u. sn a <-> x = a \/ x e. Dom F) |
34 |
|
elun |
x e. Dom F u. sn a <-> x e. Dom F \/ x e. sn a |
35 |
33, 34 |
ax_mp |
(x e. Dom F \/ x e. sn a <-> x = a \/ x e. Dom F) -> (x e. Dom F u. sn a <-> x = a \/ x e. Dom F) |
36 |
|
bitr |
(x e. Dom F \/ x e. sn a <-> x e. sn a \/ x e. Dom F) -> (x e. sn a \/ x e. Dom F <-> x = a \/ x e. Dom F) -> (x e. Dom F \/ x e. sn a <-> x = a \/ x e. Dom F) |
37 |
|
orcomb |
x e. Dom F \/ x e. sn a <-> x e. sn a \/ x e. Dom F |
38 |
36, 37 |
ax_mp |
(x e. sn a \/ x e. Dom F <-> x = a \/ x e. Dom F) -> (x e. Dom F \/ x e. sn a <-> x = a \/ x e. Dom F) |
39 |
|
oreq1 |
(x e. sn a <-> x = a) -> (x e. sn a \/ x e. Dom F <-> x = a \/ x e. Dom F) |
40 |
|
elsn |
x e. sn a <-> x = a |
41 |
39, 40 |
ax_mp |
x e. sn a \/ x e. Dom F <-> x = a \/ x e. Dom F |
42 |
38, 41 |
ax_mp |
x e. Dom F \/ x e. sn a <-> x = a \/ x e. Dom F |
43 |
35, 42 |
ax_mp |
x e. Dom F u. sn a <-> x = a \/ x e. Dom F |
44 |
32, 43 |
ax_mp |
x e. Dom (write F a b) <-> x e. Dom F u. sn a |
45 |
44 |
eqri |
Dom (write F a b) == Dom F u. sn a |