theorem rnwrite (F: set) (a b: nat): $ Ran (write F a b) C_ Ran F u. sn b $;
Step | Hyp | Ref | Expression |
1 |
|
elrn |
x e. Ran (write F a b) <-> E. y y, x e. write F a b |
2 |
|
elwrite |
y, x e. write F a b <-> ifp (y = a) (x = b) (y, x e. F) |
3 |
|
eor |
(y = a /\ x = b -> x e. Ran F u. sn b) -> (~y = a /\ y, x e. F -> x e. Ran F u. sn b) -> y = a /\ x = b \/ ~y = a /\ y, x e. F -> x e. Ran F u. sn b |
4 |
3 |
conv ifp |
(y = a /\ x = b -> x e. Ran F u. sn b) -> (~y = a /\ y, x e. F -> x e. Ran F u. sn b) -> ifp (y = a) (x = b) (y, x e. F) -> x e. Ran F u. sn b |
5 |
|
elun2 |
x e. sn b -> x e. Ran F u. sn b |
6 |
|
elsn |
x e. sn b <-> x = b |
7 |
|
anr |
y = a /\ x = b -> x = b |
8 |
6, 7 |
sylibr |
y = a /\ x = b -> x e. sn b |
9 |
5, 8 |
syl |
y = a /\ x = b -> x e. Ran F u. sn b |
10 |
4, 9 |
ax_mp |
(~y = a /\ y, x e. F -> x e. Ran F u. sn b) -> ifp (y = a) (x = b) (y, x e. F) -> x e. Ran F u. sn b |
11 |
|
elun1 |
x e. Ran F -> x e. Ran F u. sn b |
12 |
|
prelrn |
y, x e. F -> x e. Ran F |
13 |
12 |
anwr |
~y = a /\ y, x e. F -> x e. Ran F |
14 |
11, 13 |
syl |
~y = a /\ y, x e. F -> x e. Ran F u. sn b |
15 |
10, 14 |
ax_mp |
ifp (y = a) (x = b) (y, x e. F) -> x e. Ran F u. sn b |
16 |
2, 15 |
sylbi |
y, x e. write F a b -> x e. Ran F u. sn b |
17 |
16 |
eex |
E. y y, x e. write F a b -> x e. Ran F u. sn b |
18 |
1, 17 |
sylbi |
x e. Ran (write F a b) -> x e. Ran F u. sn b |
19 |
18 |
ax_gen |
A. x (x e. Ran (write F a b) -> x e. Ran F u. sn b) |
20 |
19 |
conv subset |
Ran (write F a b) C_ Ran F u. sn b |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)