theorem rnwrite (F: set) (a b: nat): $ Ran (write F a b) C_ Ran F u. sn b $;
    
      
        | Step | Hyp | Ref | Expression | 
        
          | 1 | 
           | 
          elrn | 
          x e. Ran (write F a b) <-> E. y y, x e. write F a b  | 
        
        
          | 2 | 
           | 
          elwrite | 
          y, x e. write F a b <-> ifp (y = a) (x = b) (y, x e. F)  | 
        
        
          | 3 | 
           | 
          eor | 
          (y = a /\ x = b -> x e. Ran F u. sn b) -> (~y = a /\ y, x e. F -> x e. Ran F u. sn b) -> y = a /\ x = b \/ ~y = a /\ y, x e. F -> x e. Ran F u. sn b  | 
        
        
          | 4 | 
          3 | 
          conv ifp | 
          (y = a /\ x = b -> x e. Ran F u. sn b) -> (~y = a /\ y, x e. F -> x e. Ran F u. sn b) -> ifp (y = a) (x = b) (y, x e. F) -> x e. Ran F u. sn b  | 
        
        
          | 5 | 
           | 
          elun2 | 
          x e. sn b -> x e. Ran F u. sn b  | 
        
        
          | 6 | 
           | 
          elsn | 
          x e. sn b <-> x = b  | 
        
        
          | 7 | 
           | 
          anr | 
          y = a /\ x = b -> x = b  | 
        
        
          | 8 | 
          6, 7 | 
          sylibr | 
          y = a /\ x = b -> x e. sn b  | 
        
        
          | 9 | 
          5, 8 | 
          syl | 
          y = a /\ x = b -> x e. Ran F u. sn b  | 
        
        
          | 10 | 
          4, 9 | 
          ax_mp | 
          (~y = a /\ y, x e. F -> x e. Ran F u. sn b) -> ifp (y = a) (x = b) (y, x e. F) -> x e. Ran F u. sn b  | 
        
        
          | 11 | 
           | 
          elun1 | 
          x e. Ran F -> x e. Ran F u. sn b  | 
        
        
          | 12 | 
           | 
          prelrn | 
          y, x e. F -> x e. Ran F  | 
        
        
          | 13 | 
          12 | 
          anwr | 
          ~y = a /\ y, x e. F -> x e. Ran F  | 
        
        
          | 14 | 
          11, 13 | 
          syl | 
          ~y = a /\ y, x e. F -> x e. Ran F u. sn b  | 
        
        
          | 15 | 
          10, 14 | 
          ax_mp | 
          ifp (y = a) (x = b) (y, x e. F) -> x e. Ran F u. sn b  | 
        
        
          | 16 | 
          2, 15 | 
          sylbi | 
          y, x e. write F a b -> x e. Ran F u. sn b  | 
        
        
          | 17 | 
          16 | 
          eex | 
          E. y y, x e. write F a b -> x e. Ran F u. sn b  | 
        
        
          | 18 | 
          1, 17 | 
          sylbi | 
          x e. Ran (write F a b) -> x e. Ran F u. sn b  | 
        
        
          | 19 | 
          18 | 
          ax_gen | 
          A. x (x e. Ran (write F a b) -> x e. Ran F u. sn b)  | 
        
        
          | 20 | 
          19 | 
          conv subset | 
          Ran (write F a b) C_ Ran F u. sn b  | 
        
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8),
    
axs_the
     (theid,
      the0),
    
axs_peano
     (peano1,
      peano2,
      peano5,
      addeq,
      muleq,
      add0,
      addS,
      mul0,
      mulS)