Theorem prelrn | index | src |

theorem prelrn (A: set) (a b: nat): $ a, b e. A -> b e. Ran A $;
StepHypRefExpression
1 elrn
b e. Ran A <-> E. x x, b e. A
2 preq1
x = a -> x, b = a, b
3 2 eleq1d
x = a -> (x, b e. A <-> a, b e. A)
4 3 iexe
a, b e. A -> E. x x, b e. A
5 1, 4 sylibr
a, b e. A -> b e. Ran A

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)