Theorem ifppos | index | src |

pub theorem ifppos (p a b: wff): $ p -> (ifp p a b <-> a) $;
StepHypRefExpression
1 bior2
~(~p /\ b) -> (p /\ a \/ ~p /\ b <-> p /\ a)
2 1 conv ifp
~(~p /\ b) -> (ifp p a b <-> p /\ a)
3 con2
(~p /\ b -> ~p) -> p -> ~(~p /\ b)
4 anl
~p /\ b -> ~p
5 3, 4 ax_mp
p -> ~(~p /\ b)
6 2, 5 syl
p -> (ifp p a b <-> p /\ a)
7 bian1
p -> (p /\ a <-> a)
8 6, 7 bitrd
p -> (ifp p a b <-> a)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp)