Theorem writefin | index | src |

theorem writefin (F: set) (a b: nat): $ finite F -> finite (write F a b) $;
StepHypRefExpression
1 fineq
write F a b == (F |` {x | x != a}) u. sn (a, b) -> (finite (write F a b) <-> finite ((F |` {x | x != a}) u. sn (a, b)))
2 writeres
write F a b == (F |` {x | x != a}) u. sn (a, b)
3 1, 2 ax_mp
finite (write F a b) <-> finite ((F |` {x | x != a}) u. sn (a, b))
4 unfin
finite (F |` {x | x != a}) -> finite (sn (a, b)) -> finite ((F |` {x | x != a}) u. sn (a, b))
5 resfin
finite F -> finite (F |` {x | x != a})
6 finns
finite (sn (a, b))
7 6 a1i
finite F -> finite (sn (a, b))
8 4, 5, 7 sylc
finite F -> finite ((F |` {x | x != a}) u. sn (a, b))
9 3, 8 sylibr
finite F -> finite (write F a b)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)