Theorem finns | index | src |

theorem finns (a: nat): $ finite a $;
StepHypRefExpression
1 finss
a C_ {x | x < a} -> finite {x | x < a} -> finite a
2 ssab2
A. x (x e. a -> x < a) <-> a C_ {x | x < a}
3 ellt
x e. a -> x < a
4 3 ax_gen
A. x (x e. a -> x < a)
5 2, 4 mpbi
a C_ {x | x < a}
6 1, 5 ax_mp
finite {x | x < a} -> finite a
7 ltfin
finite {x | x < a}
8 6, 7 ax_mp
finite a

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)