theorem finns (a: nat): $ finite a $;
Step | Hyp | Ref | Expression |
1 |
|
finss |
a C_ {x | x < a} -> finite {x | x < a} -> finite a |
2 |
|
ssab2 |
A. x (x e. a -> x < a) <-> a C_ {x | x < a} |
3 |
|
ellt |
x e. a -> x < a |
4 |
3 |
ax_gen |
A. x (x e. a -> x < a) |
5 |
2, 4 |
mpbi |
a C_ {x | x < a} |
6 |
1, 5 |
ax_mp |
finite {x | x < a} -> finite a |
7 |
|
ltfin |
finite {x | x < a} |
8 |
6, 7 |
ax_mp |
finite a |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)