Theorem lowereqd | index | src |

theorem lowereqd (_G: wff) (_A1 _A2: set):
  $ _G -> _A1 == _A2 $ >
  $ _G -> lower _A1 = lower _A2 $;
StepHypRefExpression
1 eqsidd
_G -> n == n
2 hyp _Ah
_G -> _A1 == _A2
3 1, 2 eqseqd
_G -> (n == _A1 <-> n == _A2)
4 3 abeqd
_G -> {n | n == _A1} == {n | n == _A2}
5 4 theeqd
_G -> the {n | n == _A1} = the {n | n == _A2}
6 5 conv lower
_G -> lower _A1 = lower _A2

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0)